BZOJ1396 识别子串 字符串 SAM 线段树
原文链接http://www.cnblogs.com/zhouzhendong/p/9004467.html
题目传送门 - BZOJ1396
题意
给定一个字符串$s$,$|s|\leq 10^5$。
对于$s$的每一个位置,求$s$的包含该位置的、仅在$s$中出现一次的连续子串的最短长度。
题解
考虑先对于$s$构建一个后缀自动机。
由于我们要考虑的串是只能在$s$中出现一次的。
所以我们先基数排序,然后通过$fa$指针计算每一个节点的$Right$集合。
只出现一次的就是$Right$集合大小为$1$的。
对于$Right$大小为$1$的节点$i$,首先我们得知$s[Right(i)-Max(i)+1\cdots Right(i)]$是只出现一次的,所以我们开个线段树,直接标记永久化,让$Right(i)-Max(i)+1\cdots Right(i)$的答案对于$Max(i)$取个$\min$。又考虑到$s[Right(i)-j+1\cdots Right(i)|Max(i)\geq j > Max(fa(i))]$也是只出现一次的,只不过区间对某一个定值取$\min$改成了对等差数列取$\min$而已。
于是只需要开两棵标记永久化的线段树即可。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=100005;
int n,Min[N<<2],Min2[N<<2];
int root=1,size=1,last=1;
int plast[N],tax[N],totend[N<<1],id[N<<1];
char s[N];
struct SAM{
int Next[26],fa,Max;
}t[N<<1];
void extend(int c){
int p=last,np=++size,q,nq;
t[np].Max=t[p].Max+1;
for (;!t[p].Next[c];p=t[p].fa)
t[p].Next[c]=np;
q=t[p].Next[c];
if (t[q].Max==t[p].Max+1)
t[np].fa=q;
else {
nq=++size;
t[nq]=t[q],t[nq].Max=t[p].Max+1;
t[q].fa=t[np].fa=nq;
for (;t[p].Next[c]==q;p=t[p].fa)
t[p].Next[c]=nq;
}
last=np;
}
void build(int rt,int L,int R){
Min[rt]=n,Min2[rt]=n*2;
if (L==R)
return;
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
build(ls,L,mid);
build(rs,mid+1,R);
}
void update1(int rt,int L,int R,int xL,int xR,int v){
if (L>xR||xL>R)
return;
if (xL<=L&&R<=xR){
Min[rt]=min(Min[rt],v);
return;
}
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
update1(ls,L,mid,xL,xR,v);
update1(rs,mid+1,R,xL,xR,v);
}
void update2(int rt,int L,int R,int xL,int xR,int v){
if (L>xR||xL>R)
return;
if (xL<=L&&R<=xR){
Min2[rt]=min(Min2[rt],v);
return;
}
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
update2(ls,L,mid,xL,xR,v);
update2(rs,mid+1,R,xL,xR,v-(mid-L+1));
}
int query(int rt,int L,int R,int x){
if (L==R)
return min(Min[rt],Min2[rt]);
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
if (x<=mid)
return min(query(ls,L,mid,x),min(Min[rt],Min2[rt]-(x-L)));
else
return min(query(rs,mid+1,R,x),min(Min[rt],Min2[rt]-(x-L)));
}
int main(){
scanf("%s",s+1);
n=strlen(s+1);
t[0].Max=-1;
for (int i=0;i<26;i++)
t[0].Next[i]=1;
for (int i=1;i<=n;i++)
extend(s[i]-'a'),plast[i]=last;
for (int i=1;i<=size;i++)
tax[t[i].Max]++;
for (int i=1;i<=n;i++)
tax[i]+=tax[i-1];
for (int i=1;i<=size;i++)
id[tax[t[i].Max]--]=i,totend[i]=-1;
for (int i=1;i<=n;i++)
totend[plast[i]]=i;
for (int i=size;i>=1;i--){
int &fa=totend[t[id[i]].fa],&now=totend[id[i]];
fa=fa==-1?now:-2;
}
build(1,1,n);
for (int i=2;i<=size;i++){
if (totend[i]<0)
continue;
int p3=totend[i],p2=p3-t[i].Max+1,p1=p3-t[t[i].fa].Max;
update1(1,1,n,p1,p3,t[t[i].fa].Max+1);
update2(1,1,n,p2,p1,t[i].Max+(p2-1));
}
for (int i=1;i<=n;i++)
printf("%d\n",query(1,1,n,i));
return 0;
}
BZOJ1396 识别子串 字符串 SAM 线段树的更多相关文章
- bzoj1396识别子串(SAM+线段树)
复习SAM板子啦!考前刷水有益身心健康当然这不是板子题/水题…… 很容易发现只在i位置出现的串一定是个前缀串.那么对答案的贡献分成两部分:一部分是len[x]-fa~len[x]的这部分贡献会是r-l ...
- bzoj 1396: 识别子串【SAM+线段树】
建个SAM,符合要求的串显然是|right|==1的节点多代表的串,设si[i]为right集合大小,p[i]为right最大的r点,这些都可以建出SAM后再parent树上求得 然后对弈si[i]= ...
- BZOJ1396: 识别子串(后缀自动机 线段树)
题意 题目链接 Sol 后缀自动机+线段树 还是考虑通过每个前缀的后缀更新答案,首先出现次数只有一次,说明只有\(right\)集合大小为\(1\)的状态能对答案产生影响 设其结束位置为\(t\),代 ...
- BZOJ1396 识别子串【SAM+SegmentTree】
BZOJ1396 识别子串 给定一个串\(s\),对于串中的每个位置,输出经过这个位置且只在\(s\)中出现一次的子串的最短长度 朴素的想法是,我们要找到那些只出现一次的子串,之后遍历每个串,把串所覆 ...
- 【BZOJ1396】识别子串 - 后缀自动机+线段树
题意: Description Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. 题解: ...
- bzoj1396&&2865 识别子串 后缀自动机+线段树
Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. Sample Input agoodco ...
- BZOJ 1396&&2865 识别子串[后缀自动机 线段树]
Description 在这个问题中,给定一个字符串S,与一个整数K,定义S的子串T=S(i, j)是关于第K位的识别子串,满足以下两个条件: 1.i≤K≤j. 2.子串T只在S中出现过一次. 例如, ...
- BZOJ 1396: 识别子串( 后缀数组 + 线段树 )
这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法..... 求出Height数组后, 我们枚举每一位当做子串的开头. 如上图(x, y是height值), Heigh ...
- UOJ#395. 【NOI2018】你的名字 字符串,SAM,线段树合并
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ395.html 题解 记得同步赛的时候这题我爆0了,最暴力的暴力都没调出来. 首先我们看看 68 分怎么做 ...
随机推荐
- char、nchar、varchar、nvarchar 的区别
char.varchar.nchar.nvarchar为数据库中常用的字符类型,使用上要综合考虑空间利用率与存取速度.它们的区别如下: 实例解析: 定义char[9].varchar[9].nchar ...
- 用docker快速搭建wordpress博客
WordPress是一个非常著名的PHP编写的博客平台,发展到目前为止已经形成了一个庞大的网站平台系统.在WP上有规模庞大的插件和主题,可以帮助我们快速建立一个博客甚至网站. 在Windows上可 ...
- STM32应用实例十一:基于SPI和AD7192的数据采集
在开发臭氧发生器的时,我们需要一个高分辨率的AD采集,于是选择了AD7192,选择这款ADC的原因比较简单.首先它是24位的符合我们的精度要求:其次它自带时钟,便于节省空间:第三他又4路单端或2路差分 ...
- Confluence 6 通过 SSL 或 HTTPS 运行 - 确定你的证书路径
在默认的情况下,Tomcat 希望 keystore 文件被命名为 .keystore 文件,同时这个文件应该放置在 Tomcat 运行的 home 目录中(这个目录可能与你自己的 Home 目录的路 ...
- 探索一个NSObject对象占用多少内存?
1 下面写代码测试探索NSObject的本质 Objective-C代码,底层实现其实都是C\C++代码 #import <Foundation/Foundation.h> int mai ...
- Windows 系统共享文件扫描
近年来历次泄露的安全事故(工控安全),其主要原因就是内部网络自身的脆弱性问题.对于内部网络的安全检查是很必要的.传统上使用CMD命令 net view 就可以扫描在线的主机但是,主机设置取消QOS的 ...
- C#关于线程的问题
1.通过System.threading.Thread类可以创建新的线程,并在线程堆栈中运行静态和动态的实例,可以通过Thread类的构造方法传递一个无参数,并且不返回的委托, class Progr ...
- java----重载
重载: //同一个类中,方法名相同,参数列表不同[java就是靠不同的参数列表来寻找方法的],返回值可以任意,注意和函数的返回值类型相同.public class Demo { public stat ...
- Git使用三:git的使用流程
先创建仓库 创建一个文件夹,作为仓库使用 初始化仓库,在仓库目录的命令行下输入:git init 第一步:创建一个文件,并写入内容,这里写入内容的时候,要把编码设置为utf-8 第二步:输入命令将文件 ...
- Vuex状态管理模式的面试题及答案
转载:点击查看原文 1.vuex有哪几种属性? 答:有五种,分别是 State. Getter.Mutation .Action. Module 2.vuex的State特性是? 答: 一.Vuex就 ...