传送门

参考资料:

  [1]:挑战程序设计竞赛

题意

  柱状图是由一些宽度相等的长方形下端对齐后横向排列得到的图形。

  现在有由 n 个宽度为1,高度分别为h[1,2,3.......n]的长方形从左到右依次排列组成的柱状图。

  问里面包含的长方形的最大面积是多少?

题解

  如果确定了长方形的左端点L和右端点R,那么最大可能的高度就是min{h[i] | L <= i <= R}。

  这样我们就得到了一个O(N3)的算法,如果对计算区间最小值进行一些优化,那么可以把复杂度将为O(N^2)。

  但即使是这样,仍然无法在规定时间内求出答案。那么我们应该怎么做才能更高效的求解呢?

  设面积最大的长方形左端是L,右端是R,高度是H。

  易得H[L-1] < H 且 H[R+1] < H ,H=min{h[ i ] | L <= i <= R} 。

  证明:

    如果H[L-1] >= H ,那么左端点就可以更新为L-1,从而可以得到更大的长方形,与假设矛盾,因此 H[L-1] < H;

  同理可得 H[R+1] < H。

  我们可以遍历一边,找到每个 i (i=1,2,3,......,n) 的最小的L[ i ]和最大的R[ i ];

  这样答案就是 max( h[i]*(R[i]-L[i]+1) ) (i=1,2,3,.........,n)。

  关键就是如何在线性时间内求出每个 i 的 L[ i ]和R[ i ]。

  由 H[L-1] < H && H[R+1] < H 可得:

  L[i]=( i 之前的高度第一个小于 h[i] 对应的下标) + 1;

  R[i]=( i 之后的高度第一个小于 h[i] 对应的下标) - 1;

  暴力方法当然是对于每个 i 都遍历一边 i 之前的值和 i 之后的值,这当然是会超时的,所以,我们要换个思路。

  引入一个新的数据结构栈;

  在计算 L[ i ] 时,首先,判断栈顶元素 j 的高度 h[ j ] 是否大于等于 h[ i ];

  如果h[ j ] ≥ h[ i ],则不断弹出栈顶元素,直到 h[ j ] < h[ i ] 或栈为空。

  若栈为空,则L[ i ] = 1,反之,L[ i ]=j+1,然后将 i 压入栈中。

  计算 R[ i ] 时只需反向( i 从n 到 1 )重复上述过程即可。

  由于栈的压入和弹出操作都是 O(N),因此整个算法的时间复杂度为 O(N);

•Code

 #include<iostream>
#include<cstdio>
#include<stack>
using namespace std;
#define ll long long
const int maxn=1e5+; int n;
ll h[maxn];
int l[maxn];
int r[maxn];
stack<int >sta; void Clear()
{
while(!sta.empty())
sta.pop();
}
ll Solve()
{
Clear();
for(int i=;i <= n;++i)
{
while(!sta.empty() && h[sta.top()] >= h[i])
sta.pop(); l[i]=sta.empty() ? :sta.top()+;
sta.push(i);
} Clear();
for(int i=n;i >= ;--i)
{
while(!sta.empty() && h[sta.top()] >= h[i])
sta.pop(); r[i]=sta.empty() ? n:sta.top()-;
sta.push(i);
} ll ans=;
for(int i=;i <= n;++i)
ans=max(ans,h[i]*(r[i]-l[i]+)); return ans;
}
int main()
{
while(~scanf("%d",&n) && n)
{
for(int i=;i <= n;++i)
scanf("%lld",h+i); printf("%lld\n",Solve());
}
return ;
}

poj 2559(栈的应用)的更多相关文章

  1. [POJ 2559]Largest Rectangle in a Histogram 题解(单调栈)

    [POJ 2559]Largest Rectangle in a Histogram Description A histogram is a polygon composed of a sequen ...

  2. poj 2559 Largest Rectangle in a Histogram 栈

    // poj 2559 Largest Rectangle in a Histogram 栈 // // n个矩形排在一块,不同的高度,让你求最大的矩形的面积(矩形紧挨在一起) // // 这道题用的 ...

  3. stack(数组模拟) POJ 2559 Largest Rectangle in a Histogram

    题目传送门 /* 题意:宽度为1,高度不等,求最大矩形面积 stack(数组模拟):对于每个a[i]有L[i],R[i]坐标位置 表示a[L[i]] < a[i] < a[R[i]] 的极 ...

  4. POJ 2559 Program C

    Submit Status Practice POJ 2559 Description A histogram is a polygon composed of a sequence of recta ...

  5. poj 2559 Largest Rectangle in a Histogram (单调栈)

    http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 6 ...

  6. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    [题目链接] http://poj.org/problem?id=2559 [题目大意] 给出一些宽度为1的长方形下段对其后横向排列得到的图形,现在给你他们的高度, 求里面包含的最大长方形的面积 [题 ...

  7. 题解 POJ 2559【Largest Rectangle in a Histogram】(单调栈)

    题目链接:http://poj.org/problem?id=2559 思路:单调栈 什么是单调栈? 单调栈,顾名思义,就是单调的栈,也就是占中存的东西永远是单调(也就是递增或递减)的 如何实现一个单 ...

  8. POJ 2559 Largest Rectangle in a Histogram(单调栈) && 单调栈

    嗯... 题目链接:http://poj.org/problem?id=2559 一.单调栈: 1.性质: 单调栈是一种特殊的栈,特殊之处在于栈内的元素都保持一个单调性,可能为单调递增,也可能为单调递 ...

  9. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

随机推荐

  1. Map接口----Map中嵌套Map

    package cn.good.com; import java.util.HashMap; import java.util.Iterator; import java.util.Map; impo ...

  2. python之类和__init__

    构建一个商品类,__init__函数类似于构造方法,self类似于this import random class Goods: def __init__(self, name, price): se ...

  3. 10.Service资源发现

    Kubernetes Pods是不可控的.每当一个pod停止后,他不是重启,而是重建.ReplicaSets特别是Pods动态地创建和销毁(例如,当向外扩展或向内扩展时).虽然每个PodIP地址都有自 ...

  4. Thread的其他属性方法

    from threading import Thread,currentThread,active_count import time def task(): print('%s is running ...

  5. 在js文件中通过jquery定位到某个dom时候设置事件时候 相当于直接在dom里面添加事件

    在js文件中通过jquery定位到某个dom时候设置事件时候 相当于直接在dom里面添加事件  当触发事件时候 会把当前的dom传给该方法

  6. ACM之路——上车了

    校赛坚持到底,拿到了银牌:第一批进入ACM队集训,期末考试之前仍然代码不断,甚至感觉对不起大学第一次的期末考试,五天复习高数,两天复习英语,看到英语成绩是胸口突然好痛,好难受……就为了成为ACM正式队 ...

  7. WebAPI和WebService的区别

    WebAPI和WebService的区别 WebAPI用的是http协议,WebService用的是soap协议 WebAPI无状态,相对WebService更轻量级.WebAPI支持如get,pos ...

  8. JSON笔记

    JSPN示例1: { "firstName": "Brett", "lastName":"McLaughlin", &q ...

  9. DRF 版本和认证

    Django Rest Framework 版本控制组件 DRF的版本 版本控制是做什么用的, 我们为什么要用 首先我们要知道我们的版本是干嘛用的呢~~大家都知道我们开发项目是有多个版本的~~ 当我们 ...

  10. 数据库 -- mysql表操作

    一,存储引擎介绍 存储引擎即表类型,mysql根据不同的表类型会有不同的处理机制 详见:https://www.cnblogs.com/peng104/p/9751738.html 二,表介绍 表相当 ...