传送门

题意:

  给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数。

题解:

  根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! + 1 = p*q.

  令 f(K) = 

  ①如果 3K+7 为素数,则 (3K+7-1)! ≡ -1(mod 3K+7),即 (3K+6)! = (3K+7)*q -1.

  那么表达式 可化简为 [ (3K+7)*q / (3K+7) - 1 / (3K+7) ] = [ q - 1 / (3K+7)].

  易得 q-1 < q - 1 / (3K+7) < q ,所以=q-1,那么 f(K) = q-(q-1) = 1.

  ②如果 3K+7 为合数,则 (3K+6)! 能被 (3K+7) 整除,f(K) = 0;

  由此,本题转化为求解K在[1,n]范围内 (3K+7) 的素数个数。

  对②的证明:

令p=a*b,(<a<=b)
①若a!=b,则(p-)!=**..*a*..*b*..*(p-),显然 (a*b) | (p-)!;
②若a==b且为素数,则当a>2时,a*b=a*a>*a,
若p>,则(p-)! = **..*a*..*(2a)*..(p-),同样有(a*b)|(p-)!;
综上,如果p为合数,则 p | (p-)!;

AC代码:

 #include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=1e6+; int n;
int ans[maxn];//ans[i]:[1,i]中,满足 3K+7 为素数的整数个数 bool isPrime(int num)
{
int x=sqrt(num);
for(int i=;i <= x;++i)
if(num%i == )
return ;
return ;
}
void primeTable()
{
ans[]=;
for(int i=;i < maxn;++i)//离散计算出所有的结果
ans[i]=ans[i-]+isPrime(*i+);
}
int main()
{
int test;
scanf("%d",&test);
primeTable();
while(test--)
{
scanf("%d",&n);
printf("%d\n",ans[n]);
}
return ;
}

  

hdu 2973"YAPTCHA"(威尔逊定理)的更多相关文章

  1. HDU 2973 YAPTCHA (威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  2. HDU - 2973 - YAPTCHA

    先上题目: YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. HDU2937 YAPTCHA(威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  4. HDU - 2973:YAPTCHA (威尔逊定理)

    The math department has been having problems lately. Due to immense amount of unsolicited automated ...

  5. hdu2973 YAPTCHA【威尔逊定理】

    <题目链接> 题目大意: The task that is presented to anyone visiting the start page of the math departme ...

  6. HDU 5391 Zball in Tina Town【威尔逊定理】

    <题目链接> Zball in Tina Town Problem Description Tina Town is a friendly place. People there care ...

  7. YAPTCHA UVALive - 4382(换元+威尔逊定理)

    题意就是叫你求上述那个公式在不同N下的结果. 思路:很显然的将上述式子换下元另p=3k+7则有 Σ[(p-1)!+1/p-[(p-1)!/p]] 接下来用到一个威尔逊定理,如果p为素数则 ( p -1 ...

  8. HDU 6608:Fansblog(威尔逊定理)

    Fansblog Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Subm ...

  9. HDU2973(威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

随机推荐

  1. 后台web端的react

    在api.js里,存放着各种功能引用的方法,比如这个fakeRegister,里面传参数params,返回要要调回的地址,${HOST1}/user/register requset会返回codeme ...

  2. 读取jar文件的sha1码,请求maven官方的solrsearch接口查询该jar文件所对应的maven坐标信息

    版权声明:本文为博主原创文章,未经博主允许不得转载. import com.google.gson.JsonObject; import com.google.gson.JsonParser; imp ...

  3. docker 搭建简易仓库registry

    下载仓库镜像: docker pull  registry:2 运行仓库库镜像: docker run -d  -p 5000:5000  -v /usr/local/registry:/var/li ...

  4. [WC2018]州区划分——FWT+DP+FST

    题目链接: [WC2018]州区划分 题目大意:给n个点的一个无向图,点有点权,要求将这n个点划分成若干个部分,每部分合法当且仅当这部分中所有点之间的边不能构成欧拉回路.对于一种划分方案,第i个部分的 ...

  5. BZOJ2738 矩阵乘法(整体二分+树状数组)

    单个询问二分答案即可,多组询问直接整体二分再二维BIT.注意保证复杂度. #include<iostream> #include<cstdio> #include<cma ...

  6. Django ContentType组件

    ContentType组件 引入 现在我们有这样一个需求~我们的商城里有很多的商品~~节日要来了~我们要搞活动~~ 那么我们就要设计优惠券~~优惠券都有什么类型呢~~满减的~折扣的~立减的~~ 我们对 ...

  7. Quartus prime 16.0 中通过JTAG固化程序

    前言 下载项目sof文件到开发板中,掉电后会消失:由于开发板有JTAG口,则可以用JTAG固化jic文件到EPCS16芯片中. 流程 1.打开quartus软件并打开convert programmi ...

  8. Nginx 添加 PHP 支持

    背景介绍默认安装的Nginx是无法打开php文件的,需要修改相关配置才能支持php 安装yum -y install epel-release yum -y install nginx yum ins ...

  9. 【UOJ#177】欧拉回路

    [UOJ#177]欧拉回路 题面 UOJ 题解 首先图不连通就没啥好搞的了. 对于无向图而言,每个点度数为偶数. 对于有向图而言,每个点入度等于出度. 然后就是一本通上有的做法,直接\(dfs\)一遍 ...

  10. linux统计使用最多的10个命令

    # cat /root/.bash_history  | awk '{print $1}' | sort | uniq -c | sort -nr | head history      查看命令历史 ...