HDU 1695 GCD (莫比乌斯反演模板)
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17212 Accepted Submission(s): 6637
Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
Output
For each test case, print the number of choices. Use the format in the example.
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
Sample Output
Case 1: 9
Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
题解:
题意是求满足1<=x<=b和1<=y<=d的gcd(x,y)=k的(x,y)有多少对,可以转化为求1<=x<=b/k和1<=y<=d/k的gcd(x,y)=1的(x,y)有多少对,可以用到莫比乌斯反演解决,证明链接https://blog.csdn.net/outer_form/article/details/50588307
这里运用到第二个式子:
为满足
且
和
的
的对数
为满足
且
和
的
的对数
那么,一个数对x,y要满足它们的gcd是i的倍数,则x和y中都必须包含i这个因子,所以F(i)=⌊N/i⌋·⌊M/i⌋。所以反演后得到
所以得到 ,因为要去重,所以后面再减去(1,b)区间的(x,y)对数的一半;
#include<iostream>
#include<string.h>
#define ll long long
using namespace std;
ll mu[100007],prime[100007];
bool mark[100007];
void getmu()
{
mu[1]=1;
ll cnt=0;
for(ll i=2;i<100007;i++){
if(!mark[i]){
prime[cnt++]=(ll)i;
mu[i]=-1;
}
for(ll j=0;j<cnt&&i*prime[j]<100007;j++){
mark[i*prime[j]]=1;
if(i%prime[j]){
mu[i*prime[j]]=-mu[i];
}else{
mu[i*prime[j]]=0;
break;
}
}
}
}
int main()
{
int T;
ll a,b,c,d,k,ans1,ans2;
getmu();
scanf("%d",&T);
for(int ca=1;ca<=T;ca++){
scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
printf("Case %d: ",ca);
if(!k){printf("0\n");continue;}
b/=k,d/=k;
if(b>d) swap(b,d);
ans1=ans2=0;
for(ll i=1;i<=b;i++)
ans1+=mu[i]*(b/i)*(d/i);
for(ll i=1;i<=b;i++)
ans2+=mu[i]*(b/i)*(b/i);
printf("%lld\n",ans1-ans2/2);
}
return 0;
}
HDU 1695 GCD (莫比乌斯反演模板)的更多相关文章
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- HDU 1695 GCD 莫比乌斯反演
分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...
- hdu 1695 GCD 莫比乌斯
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 1695: GCD 【莫比乌斯反演】
题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...
- ●HDU 1695 GCD
题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...
- hdu1695(莫比乌斯反演模板)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意: 对于 a, b, c, d, k . 有 x 属于 [a, b], y 属于 [c, ...
随机推荐
- volatile有什么作用
- spring-session+Redis实现Session共享
关于session共享的方式有多种: (1)通过nginx的ip_hash,根据ip将请求分配到对应的服务器 (2)基于关系型数据库存储 (3)基于cookie存储 (4)服务器内置的session复 ...
- centos6.5环境安装zookeeper-3.4.5
1.将zookeeper-3.4.5.tar.gz压缩包拷贝到/usr/local/src, 并用如下命令解压 tar -xzf zookeeper-3.4.5.tar.gz 2.在zookeepe ...
- Configuring Automatic Restart of an Oracle Database
https://docs.oracle.com/cd/E11882_01/server.112/e25494/restart.htm#ADMIN12708
- JiBX笔记
注意事项 JiBX:1.2.2 (https://sourceforge.net/projects/jibx/files/jibx/jibx-1.2.2/) JDK:1.6 (http://www.o ...
- 为什么python运行的慢
最近在leetcode刷题,明显的注意到同样的算法,python运行的要慢的多,查资料得到python运行的慢主要原因如下: 一.动态类型导致运行速度慢,在北邮人论坛里面的这篇帖子中有较为详细的解释, ...
- SpringSecurity实现用户名密码登录(Token)
传统的应用是将Session放在应用服务器上,而将生成的JSESSIONID放在用户浏览器的Cookie中,而这种模式在前后端分离中就会出现以下问题 1,开发繁琐. 2,安全性和客户体验差 3,有些前 ...
- 看完此文还不懂NB-IoT,你就过来掐死我吧...
看完此文还不懂NB-IoT,你就过来掐死我吧....... 1 1G-2G-3G-4G-5G 不解释,看图,看看NB-IoT在哪里? 2 NB-IoT标准化历程 3GPP NB-IoT的标准化始于20 ...
- python骚操作之...
python中的Ellipsis对象.写作:- 中文解释:省略 该对象bool测试是为真 用途: 1.用来省略代码,作用类似于pass的一种替代方案. from collections.abc imp ...
- vscode 的使用笔记
1.使用vscode 的终端命令 ctrl + ~ 打开 vs 的终端 这是使用windows 自带的shell终端, 使用git.bash的shell 在设置里面,找到 terminal.int ...