Python数据可视化分为

标量可视化,矢量可视化,轮廓线可视化
  标量又称无向量,只有大小没有方向,运算遵循代数运算法则比如质量,密度,温度,体积,时间
  矢量又称向量,它是由大小,方向共同确定的量,运算时遵循几何运算法则,如速度,加速度,力,磁场强度,电场强度等

#实例1标量数据可视化
'''
使用等值面对标量场进行可视化(体绘制[三维空间数据场]常用手段)
等值面:标量场中标量值相等的曲面,类似地图中的等高线
  tvtk.ContourFilter等值面过滤器,用来获得等值面,
  它是由vtkObject<--vtkAlogorithm<--vtkPolyDataAlgorithm继承得到的一个类
两个方法
  generate_values()设定n条等值线的值,一般用于重新绘制等值线
  set_value()设定一条等值线的值,一般用于覆盖某条等值线或者新增加一条等值线

from tvtk.api import tvtk
from tvtkfunc import ivtk_scene,event_loop
#读入plot3D数据
plot3d=tvtk.MultiBlockPLOT3DReader(
xyz_file_name="combxyz.bin",#网格文件
q_file_name="combq.bin",#空气动力学结果文件
scalar_function_number=100,#设置标量数据数量
vector_function_number=200#设置矢量数据数量
)
plot3d.update()
grid = plot3d.output.get_block(0)#获取读入的数据集
con = tvtk.ContourFilter()#创建等值面对象
con.set_input_data(grid)#将网格与其进行绑定
#范围由数组Scalars.range决定,颜色也由scalars决定
con.generate_values(10,grid.point_data.scalars.range)#创建10个等值面
#默认映射表:最小值为红色,最大值为蓝色
#对映射器进行构造
m=tvtk.PolyDataMapper(scalar_range=grid.point_data.scalars.range,input_connection=con.output_port)
#对标量行为属性进行赋值,设置成新增加的数组的取值范围
a=tvtk.Actor(mapper=m)
#由于这十个等值面会相互嵌套,为观察等值面内部结构,修改Actor对象透明度为0.5
a.property.opacity=0.5
#绘制交互窗口
win=ivtk_scene(a)
win.scene.isometric_view()
event_loop()

generate_values是创建等值面的函数,它可以同时设定n条等值线的值。
尝试更改generate_values之中的n值之后颜色改变。可以使用set_value方法设置每个等值面的值,它的第一个参数指定了第几个等值面,第二个参数指定了等值面的值。
运行效果是很漂亮的,通过设置不同的透明度会出现不同的效果。

矢量数据可视化
用箭头表示矢量数据场的数据,
  箭头的大小可以表示标量信息,
  箭头的方向可以表示矢量数据的方向
为了在矢量数据的网格处放置箭头符号,使用tvtk库提供的Glyph3D方法
可以产生放缩,着色和具有方向的符号
vtkObject<--vtkAlgorithm<--vtkPolyDataAlgorithm<--vtkGly3D
可以采用降维的方法降低数据密度
可以使用tvtk.MaskPoints()对数据进行降采样
vtkObject<--vtkAlgorithm<--vtkPolyDataAlgorithm<--vtkMaskPoints

from tvtk.api import tvtk
from tvtkfunc import ivtk_scene,event_loop
#读入plot3D数据
plot3d=tvtk.MultiBlockPLOT3DReader(
xyz_file_name="combxyz.bin",#网格文件
q_file_name="combq.bin",#空气动力学结果文件
scalar_function_number=100,#设置标量数据数量
vector_function_number=200#设置矢量数据数量
)
plot3d.update()
grid = plot3d.output.get_block(0)#获取读入的数据集(StructureGrid)
#对数据集中的数据进行随机选取,每50个点选择一个点
mask = tvtk.MaskPoints(random_mode = True,on_ratio = 50)#为数据进行了降采样
#每50个点选择一个点,为数据进行了降采样。为了观察效果可以在shell中进行输出降采样的效果
mask.set_input_data(grid)#将grid与musk相连
#创建表示箭头的PolyData数据集
glyph_source = tvtk.ArrowSource()#ArrowSource可以改成ConeSource()出来的箭头变成圆锥,scale_factor=2设置防缩系数
#在Mask采样后的PolyData数据集每个点上放置一个箭头
#箭头的方向、长度和颜色由于点对应的矢量和标量数据决定
#在本例中箭头的方向表示速度的方向,大小和颜色表示密度
#箭头越大,该点标量值越大。箭头的颜色表表示标量值的大小
#红色对应的标量值越小,蓝色对应的标量值越大
glyph=tvtk.Glyph3D(input_connection=mask.output_port,scale_factor=4)#4表示符号的共同放缩系数
#tvtk的可视化技术,它输入数据的每个点都被拷贝一个符号。
#符号本身是通过Glyph3D的filter的第二个输入函数来接收vtkPolyData的类型数据
#然后通过ArrowSource在每个点上放置一个箭头
glyph.set_source_connection(glyph_source.output_port)
m=tvtk.PolyDataMapper(scalar_range=grid.point_data.scalars.range,input_connection=glyph.output_port)
a=tvtk.Actor(mapper=m)
#交互窗口绘制
win=ivtk_scene(a)
win.scene.isometric_view()
event_loop()

运行效果如下,可以说是仿真版的西北风本风了哇咔咔咔

按照注释的方法换成圆锥是什么效果呢?

哈哈哈小圆锥萌萌哒~如果我再皮一下换成立方体呢?

竟然莫名地好看。。

降采样技术是挺重要的,要不可能根本出不来

可以使用tvtk.MaskPoints()对数据进行降采样。可以通过Shell查看降采样之前的数据个数和降采样之后的数据个数

相差还是多的

空间轮廓线可视化
针对载入的流体数据计算其空间轮廓线并进行三维可视化
使用tvtk.StructuredGridOutlineFilter()来实现PoluData对象的外边框计算
该类也是继承自
vtkObject<--vtkAlgorithm<--vtkPolyDataAlgorithm<--vtkStructuredGridOutlineFilter

from tvtk.api import tvtk
from tvtk.common import configure_input
from tvtkfunc import ivtk_scene,event_loop
#读入plot3D数据
plot3d=tvtk.MultiBlockPLOT3DReader(
xyz_file_name="combxyz.bin",#网格文件
q_file_name="combq.bin",#空气动力学结果文件
scalar_function_number=100,#设置标量数据数量
vector_function_number=200#设置矢量数据数量
)
plot3d.update()#让plot3D计算出其输出数据
grid = plot3d.output.get_block(0)#获取读入的数据集(StructureGrid)
outline = tvtk.StructuredGridOutlineFilter()#计算表示外边框(轮廓)的PolyData对象
configure_input(outline,grid)#调用将外框计算与数据集产生关联
#两个参数:一个是外框PolyData对象一个是流体数据grid
m = tvtk.PolyDataMapper(input_connection=outline.output_port) a = tvtk.Actor(mapper=m)#创建一个Action实体Actor
a.property.color= 0.3, 0.3, 0.3
#窗口绘制
win = ivtk_scene(a)

运行结果就是当前文件的轮廓线

Python TVTK 标量数据可视化与矢量数据可视化,空间轮廓线可视化的更多相关文章

  1. 用Python玩转数据第六周——高级数据处理与可视化

    1.matplotlib中有两个模块,pyplot和pylab import matplotlib.pyplot as plt  ///plt.plot(x,y) import pylab as pl ...

  2. python 爬虫与数据可视化--python基础知识

    摘要:偶然机会接触到python语音,感觉语法简单.功能强大,刚好朋友分享了一个网课<python 爬虫与数据可视化>,于是在工作与闲暇时间学习起来,并做如下课程笔记整理,整体大概分为4个 ...

  3. python grib气象数据可视化

    基于Python的Grib数据可视化           利用Python语言实现Grib数据可视化主要依靠三个库——pygrib.numpy和matplotlib.pygrib是欧洲中期天气预报中心 ...

  4. python 抓取数据,pandas进行数据分析并可视化展示

    感觉要总结总结了,希望这次能写个系列文章分享分享心得,和大神们交流交流,提升提升. 因为半桶子水的水平,一直在想写什么,为什么写,怎么写. 直到现在找到了一种好的办法: 1.写什么 自己手上掌握的,工 ...

  5. 利用Python网络爬虫抓取微信好友的签名及其可视化展示

    前几天给大家分享了如何利用Python词云和wordart可视化工具对朋友圈数据进行可视化,利用Python网络爬虫抓取微信好友数量以及微信好友的男女比例,以及利用Python网络爬虫抓取微信好友的所 ...

  6. Python数模笔记-StatsModels 统计回归(4)可视化

    1.如何认识可视化? 图形总是比数据更加醒目.直观.解决统计回归问题,无论在分析问题的过程中,还是在结果的呈现和发表时,都需要可视化工具的帮助和支持. 需要指出的是,虽然不同绘图工具包的功能.效果会有 ...

  7. Windows下Python读取GRIB数据

    之前写了一篇<基于Python的GRIB数据可视化>的文章,好多博友在评论里问我Windows系统下如何读取GRIB数据,在这里我做一下说明. 一.在Windows下Python为什么无法 ...

  8. 用Python浅析股票数据

    用Python浅析股票数据 本文将使用Python来可视化股票数据,比如绘制K线图,并且探究各项指标的含义和关系,最后使用移动平均线方法初探投资策略. 数据导入 这里将股票数据存储在stockData ...

  9. 使用 python 处理 nc 数据

    前言 这两天帮一个朋友处理了些 nc 数据,本以为很简单的事情,没想到里面涉及到了很多的细节和坑,无论是"知难行易"还是"知易行难"都不能充分的说明问题,还是& ...

随机推荐

  1. Object备忘录

    1.Object.assign(target,...source) 方法用于将所有可枚举属性的值从一个或多个源对象复制到目标对象.它将返回目标对象. 2.Object.create()方法创建一个新对 ...

  2. unity中给图片换颜色

    slot边框.color = new Color32 (93,165,255,255);

  3. python多线程的学习

    0x00.前言 学了一下python的多线程,threading模块 感觉挺有意思的,随便练手写了一个很粗陋的windows下多线程扫在线ip的脚本 脚本没什么技术含量,纯粹练手,扫一趟192的局域网 ...

  4. svn 恢复删除文件

    参考这个 https://blog.csdn.net/qdujunjie/article/details/37766167

  5. python测试开发django-2.templates模板与html页

    前言 Django 中的视图的概念是一类具有相同功能和模板的网页的集合.通俗一点来说,就是你平常打开浏览器,看到浏览器窗口展示出来的页面内容,那就是视图.前面一章通过浏览器访问http://127.0 ...

  6. 报错:APP has stopped

     由于在 /MyActivity/AndroidManifest.xml 中把activity的类名打错,而导致程序加载后即出错. 而输错启动程序的类名并不会引起报错,因此这个应该引起注意.

  7. byte -> int

    传送门 传送门2 以下copy: int i = 0;   i += ((b[0] & 0xff) << 24);   i += ((b[1] & 0xff) <&l ...

  8. L2-018 多项式A除以B(模拟)

    这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数. 输入格式: 输入分两行,每行给出一个非零多项式,先给出A,再给出B.每行的 ...

  9. tmux复制模式

    复制模式支持滚屏等操作,进入方法为Ctrl + b再按"[",此时进入所谓的copy-mode 然后就可以用上下键或PageDn/PageUp浏览屏幕了. 想退出copy-mode ...

  10. SUBMIT WITHOUT ALV

    data:seltab type table of rsparams, seltab_wa like line of seltab. define add_seltab. if &1 is n ...