题意简述

有n盏灯,默认为关,有两个操作:

1.改变l~r的灯的状态(把开着的灯关上,关着的灯打开)

2.查询l~r开着的灯的数量

题解思路

维护一个线段树,支持区间修改,区间查询

懒标记每次^1

代码

#include <cstdio>
using namespace std;
int n, m, opt, x, y;
int a[400010], la[400010];
void push_up(int x)
{
a[x] = a[x << 1] + a[x << 1 | 1];
}
void push_down(int x, int len)
{
a[x << 1] = (len - (len >> 1)) - a[x << 1];
a[x << 1 | 1] = (len >> 1) - a[x << 1 | 1];
la[x << 1] ^= 1;
la[x << 1 | 1] ^= 1;
la[x] = 0;
}
void change(int x, int l, int r, int l1, int r1)
{
if (l1 <= l && r <= r1)
{
a[x] = r - l + 1 - a[x];
la[x] ^= 1;
return;
}
if (la[x]) push_down(x, r - l + 1);
int mid = l + r >> 1;
if (l1 <= mid) change(x << 1, l, mid, l1, r1);
if (r1 > mid) change(x << 1 | 1, mid + 1, r, l1, r1);
push_up(x);
}
int query(int x, int l, int r, int l1, int r1, int ans = 0)
{
if (l1 <= l && r <= r1) return a[x];
if (la[x]) push_down(x, r - l + 1);
int mid = l + r >> 1;
if (l1 <= mid) ans += query(x << 1, l, mid, l1, r1);
if (r1 > mid) ans += query(x << 1 | 1, mid + 1, r, l1, r1);
return ans;
}
int main()
{
scanf("%d%d", &n, &m);
for (register int i = 1; i <= m; ++i)
{
scanf("%d", &opt);
if (!opt)
{
scanf("%d%d", &x, &y);
change(1, 1, n, x, y);
}
else
{
scanf("%d%d", &x, &y);
printf("%d\n", query(1, 1, n, x, y));
}
}
}

洛谷 P3870 [TJOI2009]开关的更多相关文章

  1. 洛谷P3870 [TJOI2009]开关

    题目描述 现有\(N(2 ≤ N ≤ 100000)\)盏灯排成一排,从左到右依次编号为:\(1,2,......,N\).然后依次执行\(M(1 ≤ M ≤ 100000)\)项操作,操作分为两种: ...

  2. 洛谷 P3870 [TJOI2009]开关 题解

    原题链接 前置知识: 线段树的单点.区间的修改与查询. 一看,我们需要维护两个操作: 区间取反: 区间求和. (因为区间 \(1\) 的个数,就是区间的和) 典型的 线段树 . 如果你只会线段树的 区 ...

  3. 洛谷P3870 [TJOI2009] 开关 (线段树)

    简单的省选题...... 打异或标记即可. 1 #include<bits/stdc++.h> 2 const int N=2e5+10; 3 using namespace std; 4 ...

  4. 洛谷 3870 [TJOI2009]开关

    [题解] 线段树基础题.对于每个修改操作把相应区间的sum改为区间长度-sum即可. #include<cstdio> #include<algorithm> #include ...

  5. 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)

    洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...

  6. 洛谷P3870开关题解

    我们先看题面,一看是一个区间操作,再看一下数据范围,就可以很轻松地想到是用一个数据结构来加快区间查询和修改的速度,所以我们很自然的就想到了线段树. 但是这个题还跟普通的线段树不一样,这个题可以说要思考 ...

  7. 洛谷 p3870 开关 线段树模板

    这两天学了很长时间于是做了一道水题 我就用了模板,就连任何优化都没有 就AC了,复杂度也很爆炸10个点1500多毫秒 这个题就是把lazy[]改成记录下修改的次数,每次修改的时候mod 2,因为反过来 ...

  8. Solution -「ZJOI 2019」「洛谷 P5326」开关

    \(\mathcal{Description}\)   Link.   有 \(n\) 个开关,初始时所有开关的状态为 \(0\).给定开关的目标状态 \(s_1,s_2,\cdots,s_n\).每 ...

  9. P3870 [TJOI2009]开关

    思路 重题 代码 #include <iostream> #include <vector> #include <cstdio> #include <cstr ...

随机推荐

  1. 完全平方数(C语言实现)

    一.题目 一个整数,它加上100后是一个完全平方数请问该数是多少? 二.程序分析 1.题目中没有限定这个整数的范围,因此,可以在代码中#define scope 10000,即使用scope变量定义一 ...

  2. ElasticSearch7.2安装

    1.环境 Java -version:java11 centos: 7.2 elasticsearch: 7.2 2.获取压缩包 wget https://artifacts.elastic.co/d ...

  3. 洛谷 P2671 求和

    题目描述 一条狭长的纸带被均匀划分出了nn个格子,格子编号从11到nn.每个格子上都染了一种颜色color\_icolor_i用[1,m][1,m]当中的一个整数表示),并且写了一个数字number\ ...

  4. MediatR-进程内的消息通信框架

    MediatR是一款进程内的消息订阅.发布框架,提供了Send方法用于发布到单个处理程序.Publish方法发布到多个处理程序,使用起来非常方便.目前支持 .NET Framework4.5..NET ...

  5. 个人永久性免费-Excel催化剂功能第71波-定义名称管理器维护增强

    Excel使用得好坏一个分水岭之一乃是对定义名称的使用程度如何,大量合理地使用定义名称功能,对整个Excel的高级应用带来极大的便利性和日常公式函数嵌套的可读性得到很大的提升.Excel催化剂再次以插 ...

  6. Java秒杀系统实战系列~构建SpringBoot多模块项目

    摘要:本篇博文是“Java秒杀系统实战系列文章”的第二篇,主要分享介绍如何采用IDEA,基于SpringBoot+SpringMVC+Mybatis+分布式中间件构建一个多模块的项目,即“秒杀系统”! ...

  7. linux初学者-swap分区篇

    linux初学者-swap分区篇 swap是虚拟内存,是在硬盘中分区一块区域,当内存占满但是又急迫需要时临时当作内存使用,使用效率低于内存.本文将对linux系统中swap分区的建立做一个简要介绍. ...

  8. Html5web全栈前端开发_angular框架

    昵称领取全套angular视频教程 一.Typescript typescript简称ts,是js语法的超集,很多js新的语法就借鉴了ts语法.ts是由微软团队维护的 1.1 TS简介 1.1.1 G ...

  9. javascript基础学习第一天

    Javascript 发展过程: 1.出现:为了解决用户和游览器之间的交互. 2.概念:基于对象和事件驱动,运行在游览器客户端的脚本语言. -js在游览器中运行的.(js引擎:执行js代码) -事件: ...

  10. js里的Document对象介绍

    activeElement     返回代表文档中dangqianhuodejiaodianyuansudeduixaing body                    返回代表文档中body元素 ...