火山图(Volcano Plot)常用于展示基因表达差异的分布,横坐标常为Fold change(倍数),越偏离中心差异倍数越大;纵坐标为P值(P值),值越大差异越显着。原因得名也许的英文因为查询查询结果图像火山吧

一载入R函数包及数据集

library(ggplot2)data <- read.csv("火山图.csv",header=TRUE,row.names = 1)
head(data) #查看数据类型,主要有P值,Fold change和基因ID即可。

二ggplot2绘制火山图

2.1绘制简单的火山图 - 点图

ggplot(data = data, aes(x = logFC, y = -log10(adj.P.Val))) +geom_point(alpha=0.8, size = 1)

和文献中的差距较大,以下几个方面可改进:

答:上下调基因的区分;

B:横轴,纵轴的阈值线;

C:重点基因的标示。

2.2细节优化火山图

1)根据阈值设定上下调基因

新增改列,利用ifelse函数添加基因的上下调情况,color进行区分,然后使用geom_hline()和geom_vline()参数添加阈值线,

data$change <- as.factor(ifelse(data$adj.P.Val < 0.01 & abs(data$logFC) > 1,ifelse(data$logFC > 1,'UP','DOWN'),'NOT'))

2)添加阈值线

使用geom_hline()和geom_vline()参数添加阈值线

ggplot(data = data, aes(x = logFC, y = -log10(adj.P.Val), color = change)) +  geom_point(alpha=0.8, size = 1) +  theme_bw(base_size = 15) +  theme(panel.grid.minor = element_blank(),panel.grid.major = element_blank()) +  geom_hline(yintercept=2 ,linetype=4) +geom_vline(xintercept=c(-1,1) ,linetype=4 ) +  scale_color_manual(name = "", values = c("red", "green", "black"), limits = c("UP", "DOWN", "NOT"))  

3)标示重点显着差异基因

上图是不是有点像了,新增注册列,利用ifelse函数添加重点显着差异基因,然后使用geom_text参数添加到图上,

data$sign <- ifelse(data$adj.P.Val < 0.001 & abs(data$logFC) > 2.5,rownames(data),NA)
ggplot(data = data, aes(x = logFC, y = -log10(adj.P.Val), color = change)) +  geom_point(alpha=0.8, size = 1) +  theme_bw(base_size = 15) +  theme(panel.grid.minor = element_blank(),panel.grid.major = element_blank()) +  geom_hline(yintercept=2 ,linetype=4) +geom_vline(xintercept=c(-1,1) ,linetype=4 ) +  scale_color_manual(name = "", values = c("red", "green", "black"), limits = c("UP", "DOWN", "NOT")) +geom_text(aes(label = sign), size = 3) 

4)解决基因名重叠问题

基本和纸一致,但是因为差异表达基因太多,存在重叠情况,现使用ř语言的ggrepel包解决标签太多导致的重叠问题。

library(ggrepel)ggplot(data = data, aes(x = logFC, y = -log10(adj.P.Val), color = change)) +  geom_point(alpha=0.8, size = 1) +  theme_bw(base_size = 15) +  theme(panel.grid.minor = element_blank(),panel.grid.major = element_blank()) +  scale_color_manual(name = "", values = c("red", "green", "black"), limits = c("UP", "DOWN", "NOT")) +  geom_label_repel(aes(label=sign), fontface="bold", color="grey50", box.padding=unit(0.35, "lines"), point.padding=unit(0.5, "lines"), segment.colour = "grey50")

5)标示感兴趣的基因的表达情况

将我们感兴趣的基因添加到数据的标签列中,假设以下几个基因是我们重点关注的基因,单独查看以下基因的表达情况

ggplot(data = data, aes(x = logFC, y = -log10(adj.P.Val), color = change)) +  geom_point(alpha=0.8, size = 1) +  theme_bw(base_size = 15) +  theme(panel.grid.minor = element_blank(),panel.grid.major = element_blank() ) +  scale_color_manual(name = "", values = c("red", "green", "black"), limits = c("UP", "DOWN", "NOT")) +  geom_label_repel(aes(label=LABEL), fontface="bold", color="grey50", box.padding=unit(0.35, "lines"), point.padding=unit(0.5, "lines"), segment.colour = "grey50")

呐,到这里除了数据不一样,基本实现了文献中的火山图,是不是以为到这就结束了?NO!NO!NO!实现上述静态的就可以发论文去了!

但是,,,

汇报展示的时候,如果能动态交互式的展示所有显关系着基因的FC值和P值,是不是更酷炫!

三plotly绘制交互式火山图

1)plot_ly函数画散点图

library(plotly)plot_ly(data,x = ~logFC, y = ~-log10(adj.P.Val),text = ~sign, type = 'scatter',  mode = 'markers')

会弹出一个网页,然后可以交互式的展示每个点的FC值和P值。

那可不可以在“纸”级静态火山图的基础上,实现交互式呢?当然可以!

四,参考资料

https://www.bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html

[R | plotly

更多关于生信,R,Python的内容请关注小号“生信补给站”,谢谢。

其他可能感兴趣

[R |绘图边距及布局

R-基本绘图参数(Ⅰ)

GGPLOT2 |从0开始绘制直方图

GGPLOT2 |从0开始绘制折线图

GGPLOT2 |从0开始绘制箱线图

GGPLOT2 |绘制GO富集柱形图

GGPLOT2 | 绘制KEGG气泡图

GGPLOT2 |扩展包从0开始绘制雷达图

绘图系列| R-corrplot相关图

绘图系列| R-wordcloud2包绘制词云

绘图系列| R-文氏图包绘制韦恩图

[R | UpSet-集合可视化

GGPLOT2-plotly |让你的火山图“活”过来的更多相关文章

  1. 扩增子图表解读5火山图:差异OTU的数量及变化规律

    火山图 Volcano plot 在统计学上,火山图是一种类型的散点图,被用于在大数据中快速鉴定变化.由于它的形成像火山喷发的样子,所以被称为火山图.和上文讲的曼哈顿图类似.   火山图基本元素 火山 ...

  2. R语言与医学统计图形-【13】ggplot2几何对象之盒形图

    ggplot2绘图系统--几何对象之盒形图 参数: geom_boxplot(mapping = , #lower,middle,upper,x,ymax,ymin必须(有默认) #alpha/col ...

  3. R-plotly|交互式甘特图(Gantt chart)-项目管理/学习计划

    本文首发于“生信补给站”微信公众号,https://mp.weixin.qq.com/s/CGz51qOjFSJ4Wx_qOMzjiw 更多关于R语言,ggplot2绘图,生信分析的内容,敬请关注小号 ...

  4. ggplot2 |legend参数设置,图形精雕细琢

    本文首发于微信公众号“生信补给站”,https://mp.weixin.qq.com/s/A5nqo6qnlt_5kF3_GIrjIA 学习了ggplot2|详解八大基本绘图要素后,就可以根据自己的需 ...

  5. R-forestplot包| HR结果绘制森林图

    本文首发于“生信补给站”微信公众号,https://mp.weixin.qq.com/s/2W1W-8JKTM4S4nml3VF51w 更多关于R语言,ggplot2绘图,生信分析的内容,敬请关注小号 ...

  6. 精心整理(含图版)|你要的全拿走!(R数据分析,可视化,生信实战)

    本文首发于“生信补给站”公众号,https://mp.weixin.qq.com/s/ZEjaxDifNATeV8fO4krOIQ更多关于R语言,ggplot2绘图,生信分析的内容,敬请关注小号. 为 ...

  7. ggstatsplot绘图|统计+可视化,学术科研神器

    本文首发于“生信补给站”公众号,https://mp.weixin.qq.com/s/zdSit97SOEpbnR18ARzixw 更多关于R语言,ggplot2绘图,生信分析的内容,敬请关注小号. ...

  8. R & ggplot2 & Excel绘图(直方图/经验分布图/QQ图/茎叶图/箱线图)实例

    持续更新~ 散点图 条形图 文氏图 饼图 盒型图 频率直方图 热图 PCA图 3D图 火山图 分面图 分面制作小多组图 地图 练习数据: year count china Ame jap '12 2. ...

  9. ggplot2入门与进阶(下)

    出处:http://www.cellyse.com/how_to_use_gggplot2_part2/ 更多实战 例一 Michaelis-Menten动力学方程 这个例子中采用出自文献中的一组有关 ...

随机推荐

  1. python算法与数据结构-双向链表(40)

    一.双向链表的介绍 一种更复杂的链表是“双向链表”或“双面链表”.每个节点有两个链接:一个指向前一个节点,当此节点为第一个节点时,指向空值:而另一个指向下一个节点,当此节点为最后一个节点时,指向空值. ...

  2. WPF基于3D对象捕获鼠标点击事件

    ModelUIElment3DUIElment3D是.NET3.5新增的类,替代了ModelVisual3D.ModelVisual3D有2个派生类ModelUIElment3D和ContainerU ...

  3. WebGL 着色器偏导数dFdx和dFdy介绍

    本文适合对webgl.计算机图形学.前端可视化感兴趣的读者. 偏导数函数(HLSL中的ddx和ddy,GLSL中的dFdx和dFdy)是片元着色器中的一个用于计算任何变量基于屏幕空间坐标的变化率的指令 ...

  4. Hackbar再次更新后的破解思路 v2.2.6

    不得不说在日常测试和渗透测试中hackbar这一插件给我带来了很大的便利 Hackbar在2.1.3之后的版本就开始收费了虽说价格不是很贵,但我们还是本着学习研究的心态来看看怎么绕过收费验证. 谷歌: ...

  5. 对比 C++ 和 Python,谈谈指针与引用

    花下猫语:本文是学习群内 樱雨楼 小姐姐的投稿.之前已发布过她的一篇作品<当谈论迭代器时,我谈些什么?>,大受好评.本文依然是对比 C++ 与 Python,来探讨编程语言中极其重要的概念 ...

  6. Java内存模型与内存结构

    Java内存模型 一.简介 Java内存模型(JMM)主要是为了规定线程和内存之间的一些关系:根据JMM的设计,系统存在一个主内存(Main Memory)和工作内存(Work Memory),Jav ...

  7. win10win7office系列激活工具 KMSAuto Net 2016 v1.5.4 绿色便携版

    下载地址:点我 KMSpico又称KMS激活工具,KMSpico是目前成功且经常更新的Windows激活工具,可以激活任何版本的window系统和任何版本的Office软件,即使是win8和offic ...

  8. Java项目案例之---计算公司员工的工资(面向对象复习)

    计算公司员工的工资(面向对象复习) 某公司的雇员分为以下若干类: Employee:这是所有员工总的父类,属性:员工的姓名,员工的生日月份.方法:double getSalary(int month) ...

  9. [Lydsy2017年4月月赛]抵制克苏恩题解

    考试的时候以为就是简单的概率期望题,考完后知道是简单的概率期望DP题,完美爆零. 这道题数据范围很小,很容易让人想到状压,不过貌似没什么可压的.那么只能说明这道题复杂度很高了,状态数组f[o][i][ ...

  10. MyBatis从入门到精通:使用XML方式(映射文件之类的)

    2.3节笔记部分: package tk.mybatis.simple; public class Temp { } /* 2.2 使用XML方式 MyBatis使用了Java的动态代理可以直接通过接 ...