密度峰值聚类算法MATLAB程序

凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

密度峰值聚类算法简介见:[转] 密度峰值聚类算法(DPC)

数据见:MATLAB中“fitgmdist”的用法及其GMM聚类算法,保存为gauss_data.txt文件,数据最后一列是类标签。

1. MATLAB程序

clear all
close all
%% 从文件中读取数据
data_load=dlmread('gauss_data.txt');
[num,dim]=size(data_load); %数据最后一列是类标签
data=data_load(:,1:dim-1); %去掉标签的数据
mdist=pdist(data); %两两行之间距离
A=tril(ones(num))-eye(num);
[x,y]=find(A~=0);
% Column 1: id of element i, Column 2: id of element j', Column 3: dist(i,j)'
xx=[x y mdist'];
ND=max(xx(:,2));
NL=max(xx(:,1));
if (NL>ND)
ND=NL; %% 确保 DN 取为第一二列最大值中的较大者,并将其作为数据点总数
end
N=size(xx,1); %% xx 第一个维度的长度,相当于文件的行数(即距离的总个数) %% 初始化为零
for i=1:ND
for j=1:ND
dist(i,j)=0;
end
end %% 利用 xx 为 dist 数组赋值,注意输入只存了 0.5*DN(DN-1) 个值,这里将其补成了满矩阵
%% 这里不考虑对角线元素
for i=1:N
ii=xx(i,1);
jj=xx(i,2);
dist(ii,jj)=xx(i,3);
dist(jj,ii)=xx(i,3);
end %% 确定 dc
percent=2.0;
fprintf('average percentage of neighbours (hard coded): %5.6f\n', percent); position=round(N*percent/100); %% round 是一个四舍五入函数
sda=sort(xx(:,3)); %% 对所有距离值作升序排列
dc=sda(position); %% 计算局部密度 rho (利用 Gaussian 核)
fprintf('Computing Rho with gaussian kernel of radius: %12.6f\n', dc); %% 将每个数据点的 rho 值初始化为零
for i=1:ND
rho(i)=0.;
end % Gaussian kernel
for i=1:ND-1
for j=i+1:ND
rho(i)=rho(i)+exp(-(dist(i,j)/dc)*(dist(i,j)/dc));
rho(j)=rho(j)+exp(-(dist(i,j)/dc)*(dist(i,j)/dc));
end
end
%
% "Cut off" kernel
%
%for i=1:ND-1
% for j=i+1:ND
% if (dist(i,j)<dc)
% rho(i)=rho(i)+1.;
% rho(j)=rho(j)+1.;
% end
% end
%end
%% 先求矩阵列最大值,再求最大值,最后得到所有距离值中的最大值
maxd=max(max(dist));
%% 将 rho 按降序排列,ordrho 保持序
[rho_sorted,ordrho]=sort(rho,'descend');
%% 处理 rho 值最大的数据点
delta(ordrho(1))=-1.;
nneigh(ordrho(1))=0;
%% 生成 delta 和 nneigh 数组
for ii=2:ND
delta(ordrho(ii))=maxd;
for jj=1:ii-1
if(dist(ordrho(ii),ordrho(jj))<delta(ordrho(ii)))
delta(ordrho(ii))=dist(ordrho(ii),ordrho(jj));
nneigh(ordrho(ii))=ordrho(jj);
% 记录 rho 值更大的数据点中与 ordrho(ii) 距离最近的点的编号 ordrho(jj)
end
end
end %% 生成 rho 值最大数据点的 delta 值
delta(ordrho(1))=max(delta(:)); %% 决策图
disp('Generated file:DECISION GRAPH')
disp('column 1:Density')
disp('column 2:Delta') fid = fopen('DECISION_GRAPH', 'w');
for i=1:ND
fprintf(fid, '%6.2f %6.2f\n', rho(i),delta(i));
end %% 选择一个围住类中心的矩形
disp('Select a rectangle enclosing cluster centers') %% 每台计算机,句柄的根对象只有一个,就是屏幕,它的句柄总是 0
%% >> scrsz = get(0,'ScreenSize')
%% scrsz =
%% 1 1 1280 800
%% 1280 和 800 就是你设置的计算机的分辨率,scrsz(4) 就是 800,scrsz(3) 就是 1280
scrsz = get(0,'ScreenSize'); %% 人为指定一个位置
figure('Position',[6 72 scrsz(3)/4. scrsz(4)/1.3]); %% ind 和 gamma 在后面并没有用到
for i=1:ND
ind(i)=i;
gamma(i)=rho(i)*delta(i);
end %% 利用 rho 和 delta 画出一个所谓的“决策图”
subplot(2,1,1)
tt=plot(rho(:),delta(:),'o','MarkerSize',5,'MarkerFaceColor','k','MarkerEdgeColor','k');
title ('Decision Graph','FontSize',15.0)
xlabel ('\rho')
ylabel ('\delta') fig=subplot(2,1,1);
rect = getrect(fig); %% getrect 从图中用鼠标截取一个矩形区域, rect 中存放的是
%% 矩形左下角的坐标 (x,y) 以及所截矩形的宽度和高度
rhomin=rect(1);
deltamin=rect(2); %% 作者承认这是个 error,已由 4 改为 2 了! %% 初始化 cluster 个数
NCLUST=0; %% cl 为归属标志数组,cl(i)=j 表示第 i 号数据点归属于第 j 个 cluster
%% 先统一将 cl 初始化为 -1
for i=1:ND
cl(i)=-1;
end %% 在矩形区域内统计数据点(即聚类中心)的个数
for i=1:ND
if ( (rho(i)>rhomin) && (delta(i)>deltamin))
NCLUST=NCLUST+1;
cl(i)=NCLUST; %% 第 i 号数据点属于第 NCLUST 个 cluster
icl(NCLUST)=i; %% 逆映射,第 NCLUST 个 cluster 的中心为第 i 号数据点
end
end
fprintf('NUMBER OF CLUSTERS: %i \n', NCLUST);
disp('Performing assignation') %assignation
%% 将其他数据点归类 (assignation)
for i=1:ND
if (cl(ordrho(i))==-1)
cl(ordrho(i))=cl(nneigh(ordrho(i)));
end
end
%halo
%% 由于是按照 rho 值从大到小的顺序遍历,循环结束后, cl 应该都变成正的值了. %% 处理光晕点,halo这段代码应该移到 if (NCLUST>1) 内去比较好吧
for i=1:ND
halo(i)=cl(i);
end
if (NCLUST>1)
% 初始化数组 bord_rho 为 0,每个 cluster 定义一个 bord_rho 值
for i=1:NCLUST
bord_rho(i)=0.;
end
% 获取每一个 cluster 中平均密度的一个界 bord_rho
for i=1:ND-1
for j=i+1:ND
%% 距离足够小但不属于同一个 cluster 的 i 和 j
if ((cl(i)~=cl(j))&& (dist(i,j)<=dc))
rho_aver=(rho(i)+rho(j))/2.; %% 取 i,j 两点的平均局部密度
if (rho_aver>bord_rho(cl(i)))
bord_rho(cl(i))=rho_aver;
end
if (rho_aver>bord_rho(cl(j)))
bord_rho(cl(j))=rho_aver;
end
end
end
end %% halo 值为 0 表示为 outlier
for i=1:ND
if (rho(i)<bord_rho(cl(i)))
halo(i)=0;
end
end
end %% 逐一处理每个 cluster
for i=1:NCLUST
nc=0; %% 用于累计当前 cluster 中数据点的个数
nh=0; %% 用于累计当前 cluster 中核心数据点的个数
for j=1:ND
if (cl(j)==i)
nc=nc+1;
end
if (halo(j)==i)
nh=nh+1;
end
end
fprintf('CLUSTER: %i CENTER: %i ELEMENTS: %i CORE: %i HALO: %i \n', i,icl(i),nc,nh,nc-nh);
end cmap=colormap;
for i=1:NCLUST
ic=int8((i*64.)/(NCLUST*1.));
subplot(2,1,1)
hold on
plot(rho(icl(i)),delta(icl(i)),'o','MarkerSize',8,'MarkerFaceColor',cmap(ic,:),'MarkerEdgeColor',cmap(ic,:));
end
subplot(2,1,2)
disp('Performing 2D nonclassical multidimensional scaling')
Y1 = mdscale(dist, 2, 'criterion','metricstress');
plot(Y1(:,1),Y1(:,2),'o','MarkerSize',2,'MarkerFaceColor','k','MarkerEdgeColor','k');
title ('2D Nonclassical multidimensional scaling','FontSize',15.0)
xlabel ('X')
ylabel ('Y')
for i=1:ND
A(i,1)=0.;
A(i,2)=0.;
end
for i=1:NCLUST
nn=0;
ic=int8((i*64.)/(NCLUST*1.));
for j=1:ND
if (halo(j)==i)
nn=nn+1;
A(nn,1)=Y1(j,1);
A(nn,2)=Y1(j,2);
end
end
hold on
plot(A(1:nn,1),A(1:nn,2),'o','MarkerSize',2,'MarkerFaceColor',cmap(ic,:),'MarkerEdgeColor',cmap(ic,:));
end %for i=1:ND
% if (halo(i)>0)
% ic=int8((halo(i)*64.)/(NCLUST*1.));
% hold on
% plot(Y1(i,1),Y1(i,2),'o','MarkerSize',2,'MarkerFaceColor',cmap(ic,:),'MarkerEdgeColor',cmap(ic,:));
% end
%end
faa = fopen('CLUSTER_ASSIGNATION', 'w');
disp('Generated file:CLUSTER_ASSIGNATION')
disp('column 1:element id')
disp('column 2:cluster assignation without halo control')
disp('column 3:cluster assignation with halo control')
for i=1:ND
fprintf(faa, '%i %i %i\n',i,cl(i),halo(i));
end

2. 结果

注:出错的话,将Y1 = mdscale(dist, 2, 'criterion','metricstress');换一个准则函数,比如改为Y1 = mdscale(dist, 2, 'criterion','sstress');

密度峰值聚类算法MATLAB程序的更多相关文章

  1. 密度峰值聚类算法(DPC)

    密度峰值聚类算法(DPC) 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 简介 基于密度峰值的聚类算法全称为基于快速搜索和发现密度峰值的聚类算法(cl ...

  2. 密度峰值聚类算法原理+python实现

    ​ 密度峰值聚类(Density peaks clustering, DPC)来自Science上Clustering by fast search and find of density peaks ...

  3. 简单易学的机器学习算法——基于密度的聚类算法DBSCAN

    一.基于密度的聚类算法的概述     最近在Science上的一篇基于密度的聚类算法<Clustering by fast search and find of density peaks> ...

  4. 简单易学的机器学习算法—基于密度的聚类算法DBSCAN

    简单易学的机器学习算法-基于密度的聚类算法DBSCAN 一.基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别.    ...

  5. 【机器学习】DBSCAN Algorithms基于密度的聚类算法

    一.算法思想: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层 ...

  6. 标准差分进化算法matlab程序实现(转载)

    标准差分进化算法matlab程序实现 自适应差分演化算法方面的Matlab和C++代码及论文 差分进化算法 DE-Differential Evolution matlab练习程序(差异演化DE) [ ...

  7. 蚁群算法 matlab程序(已执行)

    下面是解放军信息project大学一个老师编的matlab程序,请尊重原作者劳动,引用时请注明出处. 我经过改动添加了凝视,已经执行过,无误, function [R_best,L_best,L_av ...

  8. 谱聚类算法—Matlab代码

    % ========================================================================= % 算 法 名 称: Spectral Clus ...

  9. K-medodis聚类算法MATLAB

    国内博客,上介绍实现的K-medodis方法为: 与K-means算法类似.只是距离选择与聚类中心选择不同. 距离为曼哈顿距离 聚类中心选择为:依次把一个聚类中的每一个点当作当前类的聚类中心,求出代价 ...

随机推荐

  1. Day5- Python基础5 模块导入、time、datetime、random、os、sys、hashlib、json&pickle

    本节目录: 1.模块的分类 2.模块的导入 3.time模块 4.datetime模块 5.random 6.os模块 7.sys模块 8.hashlib 9.json&pickle 一.模块 ...

  2. Apriori关联分析详解

    ------------恢复内容开始------------ 一. Apriori关联分析概述 选择物品之间的关联规则也就是要找出物品之间的关系,要找到这种关系有两步 找出频繁一起出现的物品集的集合, ...

  3. springboot+lucene实现公众号关键词回复智能问答

    一.场景简介 最近在做公众号关键词回复方面的智能问答相关功能,发现用户输入提问内容和我们运营配置的关键词匹配回复率极低,原因是我们采用的是数据库的Like匹配. 这种模糊匹配首先不是很智能,而且也没有 ...

  4. .NET Core 中读取 Request.Headers 的姿势

    Request.Headers 的类型是 IHeaderDictionary 接口,对应的实现类是 HeaderDictionary ,C# 实现源码见 HeaderDictionary.cs . H ...

  5. Vscode 打字特效插件Power Mode安装使用说明

     壹 ❀ 引 我记得在17年使用atom编辑器的时候,使用过一款打字特效的插件,只要我们输入代码,代码上方就会有与代码颜色对应的星星效果,今天脑抽突然想起了这个中二插件,搜索了一番成功安装,大致效果如 ...

  6. tomcat运行一段时间后报错"Too many open files"

    tomcat运行一段时间后报打开太多文件错误:Too many open files  查看当前进程的文件打开数: lsof -n |awk '{print $2}'|sort|uniq -c |so ...

  7. vue 开发常见问题解决大全

    vue添加favicon.ico,包含开发环境和生产环境显示. 1.把图标放在下项目的根目录.. 2.修改build文件夹下面的webpack.dev.conf.js(开发环境) 和webpack.p ...

  8. Linux常见命令之权限管理命令

    chmod命令 chmod命令用来变更文件或目录的权限.在UNIX系统家族里,文件或目录权限的控制分别以读取.写入.执行3种一般权限来区分,另有3种特殊权限可供运用.用户可以使用chmod指令去变更文 ...

  9. Nginx反向代理及负载均衡介绍

    Nginx的产生 没有听过Nginx?那么一定听过它的"同行"Apache吧!Nginx同Apache一样都是一种WEB服务器.基于REST架构风格,以统一资源描述符(Unifor ...

  10. ASP.NET 数据绑定

    控件绑定数据源控件手动方式: DataSourceID = 数据源控件名称下拉框绑定 A.设置Datasource B.DataTextField="name"' //显示的值 C ...