密度峰值聚类算法MATLAB程序
密度峰值聚类算法MATLAB程序
凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
密度峰值聚类算法简介见:[转] 密度峰值聚类算法(DPC)
数据见:MATLAB中“fitgmdist”的用法及其GMM聚类算法,保存为gauss_data.txt文件,数据最后一列是类标签。
1. MATLAB程序
clear all
close all
%% 从文件中读取数据
data_load=dlmread('gauss_data.txt');
[num,dim]=size(data_load); %数据最后一列是类标签
data=data_load(:,1:dim-1); %去掉标签的数据
mdist=pdist(data); %两两行之间距离
A=tril(ones(num))-eye(num);
[x,y]=find(A~=0);
% Column 1: id of element i, Column 2: id of element j', Column 3: dist(i,j)'
xx=[x y mdist'];
ND=max(xx(:,2));
NL=max(xx(:,1));
if (NL>ND)
ND=NL; %% 确保 DN 取为第一二列最大值中的较大者,并将其作为数据点总数
end
N=size(xx,1); %% xx 第一个维度的长度,相当于文件的行数(即距离的总个数) %% 初始化为零
for i=1:ND
for j=1:ND
dist(i,j)=0;
end
end %% 利用 xx 为 dist 数组赋值,注意输入只存了 0.5*DN(DN-1) 个值,这里将其补成了满矩阵
%% 这里不考虑对角线元素
for i=1:N
ii=xx(i,1);
jj=xx(i,2);
dist(ii,jj)=xx(i,3);
dist(jj,ii)=xx(i,3);
end %% 确定 dc
percent=2.0;
fprintf('average percentage of neighbours (hard coded): %5.6f\n', percent); position=round(N*percent/100); %% round 是一个四舍五入函数
sda=sort(xx(:,3)); %% 对所有距离值作升序排列
dc=sda(position); %% 计算局部密度 rho (利用 Gaussian 核)
fprintf('Computing Rho with gaussian kernel of radius: %12.6f\n', dc); %% 将每个数据点的 rho 值初始化为零
for i=1:ND
rho(i)=0.;
end % Gaussian kernel
for i=1:ND-1
for j=i+1:ND
rho(i)=rho(i)+exp(-(dist(i,j)/dc)*(dist(i,j)/dc));
rho(j)=rho(j)+exp(-(dist(i,j)/dc)*(dist(i,j)/dc));
end
end
%
% "Cut off" kernel
%
%for i=1:ND-1
% for j=i+1:ND
% if (dist(i,j)<dc)
% rho(i)=rho(i)+1.;
% rho(j)=rho(j)+1.;
% end
% end
%end
%% 先求矩阵列最大值,再求最大值,最后得到所有距离值中的最大值
maxd=max(max(dist));
%% 将 rho 按降序排列,ordrho 保持序
[rho_sorted,ordrho]=sort(rho,'descend');
%% 处理 rho 值最大的数据点
delta(ordrho(1))=-1.;
nneigh(ordrho(1))=0;
%% 生成 delta 和 nneigh 数组
for ii=2:ND
delta(ordrho(ii))=maxd;
for jj=1:ii-1
if(dist(ordrho(ii),ordrho(jj))<delta(ordrho(ii)))
delta(ordrho(ii))=dist(ordrho(ii),ordrho(jj));
nneigh(ordrho(ii))=ordrho(jj);
% 记录 rho 值更大的数据点中与 ordrho(ii) 距离最近的点的编号 ordrho(jj)
end
end
end %% 生成 rho 值最大数据点的 delta 值
delta(ordrho(1))=max(delta(:)); %% 决策图
disp('Generated file:DECISION GRAPH')
disp('column 1:Density')
disp('column 2:Delta') fid = fopen('DECISION_GRAPH', 'w');
for i=1:ND
fprintf(fid, '%6.2f %6.2f\n', rho(i),delta(i));
end %% 选择一个围住类中心的矩形
disp('Select a rectangle enclosing cluster centers') %% 每台计算机,句柄的根对象只有一个,就是屏幕,它的句柄总是 0
%% >> scrsz = get(0,'ScreenSize')
%% scrsz =
%% 1 1 1280 800
%% 1280 和 800 就是你设置的计算机的分辨率,scrsz(4) 就是 800,scrsz(3) 就是 1280
scrsz = get(0,'ScreenSize'); %% 人为指定一个位置
figure('Position',[6 72 scrsz(3)/4. scrsz(4)/1.3]); %% ind 和 gamma 在后面并没有用到
for i=1:ND
ind(i)=i;
gamma(i)=rho(i)*delta(i);
end %% 利用 rho 和 delta 画出一个所谓的“决策图”
subplot(2,1,1)
tt=plot(rho(:),delta(:),'o','MarkerSize',5,'MarkerFaceColor','k','MarkerEdgeColor','k');
title ('Decision Graph','FontSize',15.0)
xlabel ('\rho')
ylabel ('\delta') fig=subplot(2,1,1);
rect = getrect(fig); %% getrect 从图中用鼠标截取一个矩形区域, rect 中存放的是
%% 矩形左下角的坐标 (x,y) 以及所截矩形的宽度和高度
rhomin=rect(1);
deltamin=rect(2); %% 作者承认这是个 error,已由 4 改为 2 了! %% 初始化 cluster 个数
NCLUST=0; %% cl 为归属标志数组,cl(i)=j 表示第 i 号数据点归属于第 j 个 cluster
%% 先统一将 cl 初始化为 -1
for i=1:ND
cl(i)=-1;
end %% 在矩形区域内统计数据点(即聚类中心)的个数
for i=1:ND
if ( (rho(i)>rhomin) && (delta(i)>deltamin))
NCLUST=NCLUST+1;
cl(i)=NCLUST; %% 第 i 号数据点属于第 NCLUST 个 cluster
icl(NCLUST)=i; %% 逆映射,第 NCLUST 个 cluster 的中心为第 i 号数据点
end
end
fprintf('NUMBER OF CLUSTERS: %i \n', NCLUST);
disp('Performing assignation') %assignation
%% 将其他数据点归类 (assignation)
for i=1:ND
if (cl(ordrho(i))==-1)
cl(ordrho(i))=cl(nneigh(ordrho(i)));
end
end
%halo
%% 由于是按照 rho 值从大到小的顺序遍历,循环结束后, cl 应该都变成正的值了. %% 处理光晕点,halo这段代码应该移到 if (NCLUST>1) 内去比较好吧
for i=1:ND
halo(i)=cl(i);
end
if (NCLUST>1)
% 初始化数组 bord_rho 为 0,每个 cluster 定义一个 bord_rho 值
for i=1:NCLUST
bord_rho(i)=0.;
end
% 获取每一个 cluster 中平均密度的一个界 bord_rho
for i=1:ND-1
for j=i+1:ND
%% 距离足够小但不属于同一个 cluster 的 i 和 j
if ((cl(i)~=cl(j))&& (dist(i,j)<=dc))
rho_aver=(rho(i)+rho(j))/2.; %% 取 i,j 两点的平均局部密度
if (rho_aver>bord_rho(cl(i)))
bord_rho(cl(i))=rho_aver;
end
if (rho_aver>bord_rho(cl(j)))
bord_rho(cl(j))=rho_aver;
end
end
end
end %% halo 值为 0 表示为 outlier
for i=1:ND
if (rho(i)<bord_rho(cl(i)))
halo(i)=0;
end
end
end %% 逐一处理每个 cluster
for i=1:NCLUST
nc=0; %% 用于累计当前 cluster 中数据点的个数
nh=0; %% 用于累计当前 cluster 中核心数据点的个数
for j=1:ND
if (cl(j)==i)
nc=nc+1;
end
if (halo(j)==i)
nh=nh+1;
end
end
fprintf('CLUSTER: %i CENTER: %i ELEMENTS: %i CORE: %i HALO: %i \n', i,icl(i),nc,nh,nc-nh);
end cmap=colormap;
for i=1:NCLUST
ic=int8((i*64.)/(NCLUST*1.));
subplot(2,1,1)
hold on
plot(rho(icl(i)),delta(icl(i)),'o','MarkerSize',8,'MarkerFaceColor',cmap(ic,:),'MarkerEdgeColor',cmap(ic,:));
end
subplot(2,1,2)
disp('Performing 2D nonclassical multidimensional scaling')
Y1 = mdscale(dist, 2, 'criterion','metricstress');
plot(Y1(:,1),Y1(:,2),'o','MarkerSize',2,'MarkerFaceColor','k','MarkerEdgeColor','k');
title ('2D Nonclassical multidimensional scaling','FontSize',15.0)
xlabel ('X')
ylabel ('Y')
for i=1:ND
A(i,1)=0.;
A(i,2)=0.;
end
for i=1:NCLUST
nn=0;
ic=int8((i*64.)/(NCLUST*1.));
for j=1:ND
if (halo(j)==i)
nn=nn+1;
A(nn,1)=Y1(j,1);
A(nn,2)=Y1(j,2);
end
end
hold on
plot(A(1:nn,1),A(1:nn,2),'o','MarkerSize',2,'MarkerFaceColor',cmap(ic,:),'MarkerEdgeColor',cmap(ic,:));
end %for i=1:ND
% if (halo(i)>0)
% ic=int8((halo(i)*64.)/(NCLUST*1.));
% hold on
% plot(Y1(i,1),Y1(i,2),'o','MarkerSize',2,'MarkerFaceColor',cmap(ic,:),'MarkerEdgeColor',cmap(ic,:));
% end
%end
faa = fopen('CLUSTER_ASSIGNATION', 'w');
disp('Generated file:CLUSTER_ASSIGNATION')
disp('column 1:element id')
disp('column 2:cluster assignation without halo control')
disp('column 3:cluster assignation with halo control')
for i=1:ND
fprintf(faa, '%i %i %i\n',i,cl(i),halo(i));
end
2. 结果

注:出错的话,将Y1 = mdscale(dist, 2, 'criterion','metricstress');换一个准则函数,比如改为Y1 = mdscale(dist, 2, 'criterion','sstress');
密度峰值聚类算法MATLAB程序的更多相关文章
- 密度峰值聚类算法(DPC)
密度峰值聚类算法(DPC) 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 简介 基于密度峰值的聚类算法全称为基于快速搜索和发现密度峰值的聚类算法(cl ...
- 密度峰值聚类算法原理+python实现
密度峰值聚类(Density peaks clustering, DPC)来自Science上Clustering by fast search and find of density peaks ...
- 简单易学的机器学习算法——基于密度的聚类算法DBSCAN
一.基于密度的聚类算法的概述 最近在Science上的一篇基于密度的聚类算法<Clustering by fast search and find of density peaks> ...
- 简单易学的机器学习算法—基于密度的聚类算法DBSCAN
简单易学的机器学习算法-基于密度的聚类算法DBSCAN 一.基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别. ...
- 【机器学习】DBSCAN Algorithms基于密度的聚类算法
一.算法思想: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层 ...
- 标准差分进化算法matlab程序实现(转载)
标准差分进化算法matlab程序实现 自适应差分演化算法方面的Matlab和C++代码及论文 差分进化算法 DE-Differential Evolution matlab练习程序(差异演化DE) [ ...
- 蚁群算法 matlab程序(已执行)
下面是解放军信息project大学一个老师编的matlab程序,请尊重原作者劳动,引用时请注明出处. 我经过改动添加了凝视,已经执行过,无误, function [R_best,L_best,L_av ...
- 谱聚类算法—Matlab代码
% ========================================================================= % 算 法 名 称: Spectral Clus ...
- K-medodis聚类算法MATLAB
国内博客,上介绍实现的K-medodis方法为: 与K-means算法类似.只是距离选择与聚类中心选择不同. 距离为曼哈顿距离 聚类中心选择为:依次把一个聚类中的每一个点当作当前类的聚类中心,求出代价 ...
随机推荐
- python中线程 进程 协程
多线程:#线程的并发是利用cpu上下文的切换(是并发,不是并行)#多线程执行的顺序是无序的#多线程共享全局变量#线程是继承在进程里的,没有进程就没有线程#GIL全局解释器锁#只要在进行耗时的IO操作的 ...
- linux学习(六)计划任务命令
目录 at命令 @(计划任务命令) at命令 at命令用于指定在未来某一时间执行一个任务,该任务只能被执行一次 at [选项] [时间] f:指定包含具体指令的任务文件 q:指定新任务队列名称 l:显 ...
- python-初始网络编程
一.服务端和客户端 BS架构 (腾讯通软件:server+client) CS架构 (web网站) C/S架构与socket的关系: 我们学习socket就是为了完成C/S架构的开发 二.OSI七层 ...
- Python对 Excel 的常用操作
几个常用的对象 Workbook:工作簿,一个包含多个Sheet的Excel文件 Worksheet:工作表,一个Workbook有多个Worksheet,如"Sheet1",&q ...
- [PHP] cli环境下php设置进程名字
if (function_exists('cli_set_process_title')) { cli_set_process_title("superman php master proc ...
- poj 1064 Cable master 二分 题解《挑战程序设计竞赛》
地址 http://poj.org/problem?id=1064 题解 二分即可 其实 对于输入与精度计算不是很在行 老是被卡精度 后来学习了一个函数 floor 向负无穷取整 才能ac 代码如下 ...
- navicat连接mysql报错1251解决方案,从头搭建node + mysql 8.0 (本人亲测有效)
准备学node 好久了 一直没有动手去写,今天突发奇想,然后就安装了一个mysql (找了一个博客跟着步骤去安装的),然后打算用node 写个增删改查. 1.下载mysql安装包 地址: http ...
- PHP中生成随机字符串,数字+大小写字母随机组合
简单的生成随机字符串: /* * 生成随机字符串 * * $length 字符串长度 */ function random_str($length) { // 密码字符集,可任意添加你需要的字符 $c ...
- spring cloud 2.x版本 Config配置中心教程
前言 本文采用Spring cloud本文为2.1.8RELEASE,version=Greenwich.SR3 本文基于前面的文章eureka-server的实现. 参考 eureka-server ...
- 关于Django
Django项目的初始化配置包括 数据库配置 Django 配置 应用程序配置 关于项目和应用 应用是一个专门做某件事的网络应用程序——比如博客系统,或者公共记录的数据库,或者简单的投票程序 项目则是 ...