[Flink]Flink1.6三种运行模式安装部署以及实现WordCount
前言
Flink三种运行方式:Local、Standalone、On Yarn。成功部署后分别用Scala和Java实现wordcount
环境
版本:Flink 1.6.2
集群环境:Hadoop2.6
开发工具: IntelliJ IDEA
一.Local模式
解压:tar -zxvf flink-1.6.2-bin-hadoop26-scala_2.11.tgz
cd flink-1.6.2
启动:./bin/start-cluster.sh
停止:./bin/stop-cluster.sh
可以通过master:8081监控集群状态
二.Standalone模式
集群安装
1:修改conf/flink-conf.yaml
jobmanager.rpc.address: hadoop100
2:修改conf/slaves
hadoop101
hadoop102
3:拷贝到其他节点
scp -rq /usr/local/flink-1.6.2 hadoop101:/usr/local
scp -rq /usr/local/flink-1.6.2 hadoop102:/usr/local
4:在hadoop100(master)节点启动
bin/start-cluster.sh
5:访问http://hadoop100:8081
三.Flink On Yarn模式
On Yarn实现逻辑

##### 第一种【yarn-session.sh(开辟资源)+flink run(提交任务)】
启动一个一直运行的flink集群
./bin/yarn-session.sh -n 2 -jm 1024 -tm 1024 [-d]
附着到一个已存在的flink yarn session
./bin/yarn-session.sh -id application_1463870264508_0029
执行任务
./bin/flink run ./examples/batch/WordCount.jar -input hdfs://hadoop100:9000/LICENSE -output hdfs://hadoop100:9000/wordcount-result.txt
停止任务 【web界面或者命令行执行cancel命令】
##### 第二种【flink run -m yarn-cluster(开辟资源+提交任务)】
启动集群,执行任务
./bin/flink run -m yarn-cluster -yn 2 -yjm 1024 -ytm 1024 ./examples/batch/WordCount.jar
注意:client端必须要设置YARN_CONF_DIR或者HADOOP_CONF_DIR或者HADOOP_HOME环境变量,通过这个环境变量来读取YARN和HDFS的配置信息,否则启动会失败
四.WordCount
代码
Scala实现代码
package com.skyell
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time
/**
* 滑动窗口计算
*
* 每隔1秒统计最近2秒数据,打印到控制台
*/
object SocketWindowWordCountScala {
def main(args: Array[String]): Unit = {
// 获取socket端口号
val port: Int = try{
ParameterTool.fromArgs(args).getInt("port")
}catch {
case e: Exception => {
System.err.println("No port set use default port 9002--scala")
}
9002
}
// 获取运行环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
// 连接socket获取数据
val text = env.socketTextStream("master", port, '\n')
//添加隐式转换,否则会报错
import org.apache.flink.api.scala._
// 解析数据(把数据打平),分组,窗口计算,并且聚合求sum
val windowCount = text.flatMap(line => line.split("\\s"))
.map(w => WordWithCount(w, 1))
.keyBy("word") // 针对相同word进行分组
.timeWindow(Time.seconds(2), Time.seconds(1))// 窗口时间函数
.sum("count")
windowCount.print().setParallelism(1) // 设置并行度为1
env.execute("Socket window count")
}
// case 定义的类可以直接调用,不用new
case class WordWithCount(word:String,count: Long)
}
Java实现代码
package com.skyell;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
public class BatchWordCountJava {
public static void main(String[] args) throws Exception{
String inputPath = "D:\\DATA\\file";
String outPath = "D:\\DATA\\result";
// 获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// 读取本地文件中内容
DataSource<String> text = env.readTextFile(inputPath);
// groupBy(0):从0聚合 sum(1):以第二个字段加和计算
DataSet<Tuple2<String, Integer>> counts = text.flatMap(new Tokenizer()).groupBy(0).sum(1);
counts.writeAsCsv(outPath, "\n", " ").setParallelism(1);
env.execute("batch word count");
}
public static class Tokenizer implements FlatMapFunction<String, Tuple2<String,Integer>>{
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
String[] tokens = value.toLowerCase().split("\\W+");
for (String token: tokens
) {
if(token.length()>0){
out.collect(new Tuple2<String, Integer>(token, 1));
}
}
}
}
}
pom依赖配置
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.6.2</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.6.2</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.11</artifactId>
<version>1.6.2</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>1.6.2</version>
<scope>provided</scope>
</dependency>
[Flink]Flink1.6三种运行模式安装部署以及实现WordCount的更多相关文章
- hadoop记录-[Flink]Flink三种运行模式安装部署以及实现WordCount(转载)
[Flink]Flink三种运行模式安装部署以及实现WordCount 前言 Flink三种运行方式:Local.Standalone.On Yarn.成功部署后分别用Scala和Java实现word ...
- ubuntu上Hadoop三种运行模式的部署
Hadoop集群支持三种运行模式:单机模式.伪分布式模式,全分布式模式,下面介绍下在Ubuntu下的部署 (1)单机模式 默认情况下,Hadoop被配置成一个以非分布式模式运行的独立JAVA进程,适合 ...
- Tomcat Connector的三种运行模式
详情参考: http://tomcat.apache.org/tomcat-7.0-doc/apr.html http://www.365mini.com/page/tomcat-connector- ...
- 【Tomcat】Tomcat Connector的三种运行模式【bio、nio、apr】
Tomcat Connector(Tomcat连接器)有bio.nio.apr三种运行模式 bio bio(blocking I/O,阻塞式I/O操作),表示Tomcat使用的是传统的Java I/O ...
- PHP语言学习之php-fpm 三种运行模式
本文主要向大家介绍了PHP语言学习之php-fpm 三种运行模式,通过具体的内容向大家展示,希望对大家学习php语言有所帮助. php-fpm配置 配置文件:php-fpm.conf 开启慢日志功能的 ...
- Tomcat Connector三种运行模式(BIO, NIO, APR)的比较和优化
Tomcat Connector的三种不同的运行模式性能相差很大,有人测试过的结果如下: 这三种模式的不同之处如下: BIO: 一个线程处理一个请求.缺点:并发量高时,线程数较多,浪费资源. Tomc ...
- Tomcat Connector(BIO, NIO, APR)三种运行模式(转)
Tomcat支持三种接收请求的处理方式:BIO.NIO.APR . BIO 阻塞式I/O操作即使用的是传统 I/O操作,Tomcat7以下版本默认情况下是以BIO模式运行的,由于每个请求都要创建一个线 ...
- php-fpm 三种运行模式
php-fpm配置 配置文件:php-fpm.conf 开启慢日志功能的: slowlog = /usr/local/var/log/php-fpm.log.slowrequest_slowlog_t ...
- python编程(python开发的三种运行模式)【转】
转自:http://blog.csdn.net/feixiaoxing/article/details/53980886 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 单循环 ...
随机推荐
- 并发编程的模型分类(转载于https://link.zhihu.com/?target=http%3A//www.54tianzhisheng.cn/2018/02/28/Java-Memory-Model/)强烈推荐!
在并发编程需要处理的两个关键问题是:线程之间如何通信 和 线程之间如何同步. 通信 通信 是指线程之间以何种机制来交换信息.在命令式编程中,线程之间的通信机制有两种:共享内存 和 消息传递. 在共享内 ...
- kotlin -- 可见性修饰符
puiblic Kotlin的可见修饰符与Java类似,但是默认可见性不同,Java默认包私有,kotlin默认public ### internal internal 只在模块内部可见.一个模块就是 ...
- Future类型的连锁的运用
Future类型的连锁的运用: 洗脸 刷牙 吃早饭 看电视 出门 串行: import scala.concurrent.{Await, Future} import scala.util.{Fail ...
- mysql配置默认字符集为UTF8mb4
[client] default-character-set=utf8mb4 [mysqld] character-set-server = utf8mb4 collation-server = ut ...
- JavaEE——JSP开发模式(model1)
model1开发模式 工作流程: ①浏览器请求,JSP页面接收 ②JSP根据请求和JavaBean进行交互 ③JavaBean进行业务处理,JDBC操纵数据库 ④JSP将请求结果返回浏览器页面 利用m ...
- Java的数组的作业11月06日
动手动脑 实验一:了解for循环得到棋盘结构 (1) 程序: import java.io.*; public class QiPan { //定义一个二维数组来充当棋盘 private String ...
- 你的火狐很慢吗? - Firefox启动和运行速度优化
最近刚开始体验firefox,发现了一些优势和缺点,无敌的扩展确实带来的是功能上的享受,可随之而来的问题便是太多的插件和主题导致ff启动如龟速,比起IE和TW都有不小的差距,因此特意搜集来一些关于启动 ...
- Vue部分编译不生效,解决Vue渲染时候会闪一下
0828自我总结 Vue部分编译不生效,解决Vue渲染时候会闪一下 一.Vue编译不生效 在标签里添加v-pre <script src="vue.js"></s ...
- Web安全之爆破中的验证码识别~
写爆破靶场的时候发现对于爆破有验证码的有点意思~这里简单总结下我们爆破有验证码的场景中几种有效的方法~~~ 0x01 使用现成工具 这里有pkav团队的神器PKAV HTTP Fuzzer 1.5.6 ...
- Flash安全总结
ActionScript AS是基于ECMAScript的语言,为了交互的需要flash应用引入ActionScript.ActionScript一共有三个版本,其中3.0较之前两个版本变化很大.Ac ...