论文阅读:EGNet: Edge Guidance Network for Salient Object Detection
当前方法的问题
全卷积网络解决了像素标记问题,出现了几种用于显着物体检测的端到端深度架构。 输出显着性图的基本单位从图像区域开始变成每个像素。 一方面,由于每个像素都有其显着性值,结果突出显示了细节。 但是,它忽略了对SOD重要的结构信息。随着网络感受野的增加,显著性物体的位置越来越准确,但是空间连贯性仍然被忽略了。显著边缘信息和显著物体信息的互补性也没有被注意到。
怎么解决这个问题
利用显著边缘特征帮助显著物体特征更准确的定位物体(尤其是边界)。
动机:良好的显着边缘检测结果可以在分割和定位方面帮助显着对象检测任务,反之亦然
网络结构

使用VGG16的去全连接层的部分,由于第一个卷积块离输入近且感受野小,扔掉不用,在第五个卷积块后增加第六个卷积块。
1.渐进显著性物体特征提取:
PSFEM模块。为了获取鲁棒性更好的显著物体特征,在每条支路后面增加三个卷积层,每个卷积层后有一个RELU层,再通过一个卷积层将将特征图转换成单通道的预测图。具体参数见表1。

2.非局部显著边缘特征提取
通过conv2-2提取局部边缘信息。自顶向下将顶层的位置信息传播到第二层。融合的第二层特征如下

表示为了改变特征通道数的卷积层,
表示ReLU激活函数,
是将输入上采样到C(2)大小的双线性插值操作。为了简便,用
来表示
,
表示第六层经过增强之后的特征,第六层的增强操作可以表示为
,第三、四、五层的增强特征可以这样计算,

表示
卷积中的参数,
表示一系列的卷积操作。在得到
后,同样进行一系列卷积处理得到最终显著边缘特征,可以这样表示
记做
。
3.一对一引导模块
利用显著边缘特征引导显著物体特征在分割和定位上表现的更好。直接融合显著边缘特征和多分辨率显著物体特征时,边缘特征会被淡化,于是采用一对一引导。在每一层将显著边缘特征融合到增强的显著物体特征中去,使高层特征的定位更加准确,对每层的增强后的显著物体特征上采样后与显著边缘特征相融合,得到显著边缘引导特征s-feature,具体操作如下。

与PSFEM类似,对每一层的融合特征进行一系列的卷积操作,然后转换成单通道预测图,通过公式3,得到增强后的s-feature
。
损失函数
显著边缘特征部分的损失函数,
分别表示显著边缘像素集合和背景像素集合,看源码发现应该是对每个GT都提取了边缘,用来监督边缘图的生成。
是手动计算一个权值之后,计算交叉熵损失(F.binary_cross_entropy_with_logits),后面计算损失也全是调用这个函数。

显著物体检测的损失函数,
分别表示显著区域像素集合和非显著区域像素集合,

特征提取部分的总损失函数:

对每层得到的输出预测图计算损失,

然后融合多尺度的预测图得到一张融合图,这一步的损失为:

其中
表示预测图和GT的交叉熵损失,与公式5结构一样。最后一对一引导模块的损失和该方法的总损失函数如下。

实验
评价指标:F-measure:

MAE:

S-measure:

对比结果:

论文阅读:EGNet: Edge Guidance Network for Salient Object Detection的更多相关文章
- 论文阅读笔记三十五:R-FCN:Object Detection via Region-based Fully Convolutional Networks(CVPR2016)
论文源址:https://arxiv.org/abs/1605.06409 开源代码:https://github.com/PureDiors/pytorch_RFCN 摘要 提出了基于区域的全卷积网 ...
- 论文阅读 | FPN:Feature Pyramid Networks for Object Detection
论文地址:https://arxiv.org/pdf/1612.03144v2.pdf 代码地址:https://github.com/unsky/FPN 概述 FPN是FAIR发表在CVPR 201 ...
- [论文阅读笔记] Structural Deep Network Embedding
[论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...
- [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion
[论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...
- Minimum Barrier Salient Object Detection at 80 FPS 论文阅读笔记
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- (不断更新)关于显著性检测的调研-Salient Object Detection: A Survey
<Salient Object Detection: A Survey>作者:Ali Borji.Ming-Ming Cheng.Huaizu Jiang and Jia Li 基本按照文 ...
- 论文笔记:Rich feature hierarchies for accurate object detection and semantic segmentation
在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程 ...
- 论文阅读:An End-to-End Network for Generating Social Relationship Graphs
论文链接:https://arxiv.org/abs/1903.09784v1 Abstract 社交关系智能代理在人工智能领域中越来越引人关注.为此,我们需要一个可以在不同社会关系上下文中理解社交关 ...
- 【论文阅读】Second-order Attention Network for Single Image Super-Resolution
概要 近年来,深度卷积神经网络(CNNs)在单一图像超分辨率(SISR)中进行了广泛的探索,并获得了卓越的性能.但是,大多数现有的基于CNN的SISR方法主要聚焦于更宽或更深的体系结构设计上,而忽略了 ...
随机推荐
- Appium之WebView自动化
WebView的测试:主要作用在混合(Hybrid)的应用 * 一部分是原生界面和代码,而另一部分是内嵌网页 * 比如微信.支付宝 * 内嵌了一个浏览器内核,由浏览器内核实现的 安卓应用中的内嵌的展示 ...
- 【JS】368- 浅析JavaScript异步
一直以来都知道 JavaScript是一门单线程语言,在笔试过程中不断的遇到一些输出结果的问题,考量的是对异步编程掌握情况.一般被问到异步的时候脑子里第一反应就是 Ajax, setTimseout. ...
- 【CuteJavaScript】ES2019 新特性汇总
最近 ECMAScript2019,最新提案完成:tc39 Finished Proposals,我这里也是按照官方介绍的顺序进行整理,如有疑问,可以查看官方介绍啦~ 另外之前也整理了 <ES6 ...
- 【Selenium】自动进入网页,出现弹窗被卡住
问题现象: 使用命令:driver.get("http://127.0.0.1/zentao/user-login.html") 进入网页,出现如下弹窗,无法进入 解决方法: #d ...
- Django对DateTimeField时间字段查询QuerySet为空的解决方案
今天在用的Django中的filter()方法对DateTimeField字段查询时碰到了问题,抓耳挠腮一下午,终于解决了,我觉得花了一下午的时间怎么着也得记录下吧(无语)...... 问题描述 : ...
- CCF-CSP题解 201604-4 游戏
bfs #include <bits/stdc++.h> const int maxn = 100; using namespace std; int n, m, t; bool hasD ...
- CodeForces - 556D Case of Fugitive (贪心+排序)
Andrewid the Android is a galaxy-famous detective. He is now chasing a criminal hiding on the planet ...
- 【高可用架构】用Nginx实现负载均衡(三)
前言 在上一篇,已经用Envoy工具统一发布了Deploy项目代码.本篇我们来看看如何用nginx实现负载均衡 负载均衡器IP 192.168.10.11 [高可用架构]系列链接:待部署的架构介绍 演 ...
- VUE项目Eslint报错
前言:eslint很恶心的一个地方:你是否被各种语法报错一个标点符号,一个空格,一个回车......各种报错折磨着你! 加上编辑器 VS Code 的自动格式化稳稳的和Eslint冲突报错. 对此,我 ...
- Android 项目优化(四):内存优化
在之前的文章中我们总结过跟Android 内存相关的知识或者问题,这里先列举一下: 1. Java 内存回收机制——GC机制 2. Java 对象引用方式 —— 强引用.软引用.弱引用和虚引用 3. ...