LR模型常见问题
信息速览
- 基础知识介绍-广义线性回归
- 逻辑斯蒂回归模型推导
- 逻辑斯蒂回归常见问题
- 补充知识信息点
基础知识:
机器学习对结果的形式分类:
- 分类算法
- 回归算法
LR:logistic regression 逻辑斯谛回归 (对数几率回归 logit regression)
LR是一个分类模型 是一个基于线性回归(linear regression)的模型
1.预备知识
线形回归
\[f(x_{i})=\omega \cdot x_{i}+b\]
采用均方误差最小的策略来进行优化
\[(w^{*},b^{*})=argmin_{(w,b)}\sum_{i=1}^{m}(f(x_{i}-y_{i}))^{2}\]
最小二乘法(least square method):
基于均方误差最小化来进行模型求解的方法
在真实的数据应用中,会将b参数融入参数\(\omega\)中\(\omega=(\omega;b)\)
最小二乘法也可以使用向量的形式来表示
\[\omega=argmin_{\omega}(y-X \omega)^{T}(y-X\omega)\]
对\(\omega\)求导,解得最优解。在\(det(X^{T}X)\neq 0\)时候
\[\omega=(X^{T} X)^{-1} X^{T} y\]
2.逻辑斯蒂回归
定义推导
基于线性回归的广义模型
\[y=g^{-1}(\omega ^{T} x+b)\]
找到一个单调可微函数将分类任务的真实标记y和线性模型的预测值联系起来。
应用与分类,分类函数- heaviside函数 ,但是其不是一个连续函数
利用 对数几率函数(sigmod函数)来进行代替
\[y=\frac{1}{1+e^{-z}}\]
结合线性回归广义模型
\[y=\frac{1}{1+e^{-(w^{T}x+b)}}\]
\[ln\frac{y}{1-y}=\omega ^{T} x+b\]
- y-正例的可能性
- 1-y 反例的可能性
\(\frac{y}{1-y}\) 称为几率 odds $ln \frac{y}{1-y} $对数几率 log odds=logit
性质
\[ ln\frac{p(y=1 | x)}{p(y=0 | x)}= \omega ^{T} x+b \]
\[p(y=1 |x)=\frac{e^{(w^{T}x+b)}}{1+e^{(w^{T}x+b)}}\]
\[p(y=0 |x)=\frac{1}{1+e^{(w^{T}x+b)}}\]
通过极大似然法来估计\(\omega,b\)的值
似然函数:
\[\prod_{i=1}^{m} p(y=1 |x)^{y_{i}} p(y=0|x)^{1-y_{i}}= \prod_{i=1}^{m} p(y=1 |x)^{y_{i}} (1-p(y=1|x))^{1-y_{i}}\]对数似然函数
\[L(\omega,b)=\sum_{i=1}^{m}[y_{i} ln(p(y=1|x))+ (1-y_{i})ln(1-p(y=1 |x))]\]
\[L(\omega,b)=\sum_{i=1}^{m} ln(p_{i} | x_{i};\omega,b)\]
每个样本属于其真实标记的概率越大越好
\[L(\omega,b)=\sum_{i=1}^{m}[y_{i} ln(p(y=1|x))+ (1-y_{i})ln(1-p(y=1 |x))]\]
\[=\sum_{i=1}^{m}[y_{i=1} ln\frac{p(y=1|x)}{1-p(y=1 |x)} +ln(1-p(y=1 |x) ]\]
\[=\sum_{i=1}^{m}[y_{i=1}(w^{T}+b) - ln (1+e^{(w^{T}x+b)})]\]
利用梯度下降法、拟牛顿法来得到最优解
\(\hat{\omega}=argMAX_{\omega} L(\theta)\)
在计算中通常会将 w,b进行合并这样只有一个矩阵要求。
求极值,找到 w,b的最大值 \(\hat{\omega}\)
最终的逻辑斯蒂模型:
\[P(y=1 |x)=\frac{e^{(\hat{w}^{T}x)}}{1+e^{(\hat{w}^{T}x)}}\]
\[P(y=0 |x)=\frac{1}{1+e^{(\hat{w}^{T}x)}}\]
3.常见逻辑斯蒂回归问题
- LR模型的损失函数的推导
为什么要使用似然函数来实现
实现为正的概率最大,同时为负的概率也最大,每个样本都实现最大概率。
LR模型的预测结果为什么很差
LR模型是线性模型,不能得到非线性模型,大部分实际问题不能用线性就能拟合。
L1,L2正则化,降低模型复杂度
模型越复杂,越容易过拟合,这大家都知道,加上L1正则化给了模型的拉普拉斯先验,加上L2正则化给了模型的高斯先验。从参数的角度来看,L1得到稀疏解,去掉一部分特征降低模型复杂度。L2得到较小的参数,如果参数很大,样本稍微变动一点,值就有很大偏差,这当然不是我们想看到的,相当于降低每个特征的权重。
4.补充知识点
基于线性模型的其他“广义模型”
LWLR 局部加权回归 locally weighted linear regression
对于预测值附近的赋予一定的权重W
参数k是用户赋值参数,决定权重赋值的比例
\[\omega=(X^{T}W X)^{-1} X^{T}W y\]
\[W(i,j)=exp(\frac{|| x_{i}-x_{j} ||}{-2 k^{2}})\]岭回归 ridge regression
当数据中特征比数据样本点还多的时候,就不能使用简单的线性回归函数
在计算\((X^{T}X)^{-1}\)会出现错误,\(n>m ,X\)不是满秩矩阵。
通过缩减系数来实现算法
加入一个矩阵,使\((X^{T} X+\lambda I_{mxm})\)可逆,非奇异
\[\omega=(X^{T} X+\lambda I_{m \times m})^{-1} X^{T} y\]lasso,前向逐步回归,PCA回归
极大似然估计
总体 X 属离散型 \(p{X=x}=p(x;\theta)\) 其中\(\theta\)为待估参数,\(X_{1},X_{2},...,X_{N}\)为X的样本
样本的联合分布概率:\[\prod_{i=1}^{n}p(x_{i} | \theta)\]
\(x_{1},x_{2},...,x_{n}\)是相应于样本\(X_{1},X_{2},...,X_{N}\)的一个样本值
事件\({ X_{1}=x_{1},X_{2}=x{2},...,X_{n}=x_{n} }\)发生的概率:
样本的似然函数\(L(\theta)\),是\(\theta\)的函数,会因取值而改变
\[L(\theta)=L(x_{1},x_{2},...,x_{n};\theta)=\prod_{i=1}^{n} p(x_{i};\theta)\]
挑选能够让似然函数达到最大的参数值\(\hat{\theta}\)
\[L(\theta)=L(x_{1},x_{2},...,x_{n};\hat{\theta})=MAX _{\theta} L(x_{1},x_{2},...,x_{n};\theta)\]
在计算时候一般使用对数似然方程方法。
LR模型常见问题的更多相关文章
- cs229 斯坦福机器学习笔记(一)-- 入门与LR模型
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资 ...
- 基于Spark的GBDT + LR模型实现
目录 基于Spark的GBDT + LR模型实现 数据预处理部分 GBDT模型部分(省略调参部分) GBDT与LR混合部分 基于Spark的GBDT + LR模型实现 测试数据来源http://arc ...
- skearn自学路径
sklearn学习总结(超全面) 关于sklearn,监督学习几种模型的对比 sklearn之样本生成make_classification,make_circles和make_moons pytho ...
- 逻辑回归模型(Logistic Regression, LR)基础
逻辑回归模型(Logistic Regression, LR)基础 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函 ...
- 逻辑回归模型(Logistic Regression, LR)--分类
逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核 ...
- GBDT与LR融合提升广告点击率预估模型
1GBDT和LR融合 LR模型是线性的,处理能力有限,所以要想处理大规模问题,需要大量人力进行特征工程,组合相似的特征,例如user和Ad维度的特征进行组合. GDBT天然适合做特 ...
- 线性模型之逻辑回归(LR)(原理、公式推导、模型对比、常见面试点)
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3) ...
- 机器学习(四)—逻辑回归LR
逻辑回归常见问题:https://www.cnblogs.com/ModifyRong/p/7739955.html 推导在笔记上,现在摘取部分要点如下: (0) LR回归是在线性回归模型的基础上,使 ...
- 线性回归、逻辑回归(LR)
线性回归 回归是一种极易理解的模型,就相当于y=f(x),表明自变量 x 和因变量 y 的关系.最常见问题有如 医生治病时的望.闻.问.切之后判定病人是否生了什么病,其中的望闻问切就是获得自变量x,即 ...
随机推荐
- solidity的delete操作汇总
简介 Solidity中的特殊操作符delete用于释放空间,为鼓励主动对空间的回收,释放空间将会返还一些gas. delete操作符可以用于任何变量,将其设置成默认值0. 删除枚举类型时,会将其值重 ...
- C++学习之路
一.二分查找 1.binary_search:查找某个元素是否出现. a.函数模板:binary_search(arr,arr+size ,indx) b.参数说明: arr: 数组首地址 size: ...
- WebSocket的实现与应用
WebSocket的实现与应用 前言 说到websocket,就不得不提http协议的连接特点特点与交互模型. 首先,http协议的特点是无状态连接.即http的前一次连接与后一次连接是相互独立的. ...
- S2:c#继承
在C#中,如果一个类后面通过冒号又跟了另外一个类,那么我们就称冒号前面的类为子类,冒号后面的类为父类.这种书写类的方式放映出来的关系就称为类的继承关系. 1.子类:派生类 父类:基类或者超类 满足is ...
- cogs 1317. 数列操作C 区间修改 区间查询
1317. 数列操作C ★★★ 输入文件:shuliec.in 输出文件:shuliec.out 简单对比时间限制:1 s 内存限制:128 MB [题目描述] 假设有一个长度为 n( ...
- 记一次使用LR测试UDP和TCP的过程
背景 最近项目要做性能测试,要出要一份性能报告,让我出一个有关Tcp和Udp的功能模块的测试,流程大概是这样,先走TCP协议协商一下会话,协商成功后走Udp收发数据. 有点简单啊,自己写个功能模块测一 ...
- Eclipse 连接不上 hadoop 的解决办法
先说一下我的情况,集群的 hadoop 是 1.0.4 ,之后在虚拟机上搭建了最新稳定版 1.2.1 之后,Eclipse 插件始终连接不上. 出现 Error: Call to 192.168.1. ...
- 浏览器输入URL到返回页面的全过程
[问题描述] 在浏览器输入www.baidu.com,然后,浏览器显示相应的百度页面,这个过程究竟发生了什么呢? [第一步,解析域名,找到主机] 正常情况下,浏览器会缓存DNS一段时间,一般2分钟到3 ...
- 并发编程(4)——AbstractQueuedSynchronizer
AQS 内部类Node 等待队列是CLH有锁队列的变体. waitStatus的几种状态: static final int CANCELLED = 1; /** waitStatus value t ...
- Android使用com.google.android.cameraview.CameraView进行拍照
import android.Manifest;import android.annotation.SuppressLint;import android.content.Context;import ...