PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
URL: https://arxiv.org/abs/1608.08021
year: 2016
TL;DR
PVANet 一个轻量级多物体目标检测架构, 遵循 “less channels with more layers” 的设计原则, 通过结合 CReLU, Inception, HyperNet 3 个模块构成了一个高效的目标检测架构, 在达到了当时 SOTA.
- CReLU 应用于PVANet 早期阶段, 以将计算次数减少一半而不会失去准确性。
- Inception 应用于特征生成子网络的剩余部分。 Inception 模块产生不同大小的感受野的输出,因此增加了前一层中感受野大小的多样性。 我们观察到堆叠 Inception 模块可以比线性卷积链更有效地捕获大小不同大小的对象。
- HyperNet 采用了多尺度表示的概念,它结合了多个中间输出,因此可以同时考虑多个级别的细节和非线性。
Dataset/Algorithm/Model/
CReLU

C.ReLU的设计动机来自对CNN中的激活模式的有趣观察。 在CNN早期阶段,输出节点倾向于“成对”出现,使得一个节点的激活是另一个节点的取反。 根据这一观察结果,CReLU将输出通道的数量减少了一半,并通过简单地将输出与其取反Concat来使通道加倍,这可以在网络的早期阶段加速2倍而不会失去准确性。
Inception

我们发现Inception可以是用于捕获输入图像中的小对象和大对象的最具成本效益的构建块之一。 要学习捕获大型物体的视觉模式,CNN的输出特征应该对应于足够大的感受野,这可以通过堆叠3x3或更大内核的卷积来轻松实现。 另一方面,为了捕获小尺寸物体,输出特征应该对应于足够小的感受野,以精确地定位感兴趣的小区域。
HyperNet

多尺度表示及其融合被证明在许多最近的深度学习任务中是有效的。 将细粒度细节与特征提取层中的高度抽象信息相结合,有助于以下 RPN(region proposal network) 和分类网络检测不同尺度的对象。
PVANet

Experiment Detail

Thoughts
为设计轻量级多尺度特征检测, 特征融合提供思路
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection的更多相关文章
- [C1W3] Neural Networks and Deep Learning - Shallow neural networks
第三周:浅层神经网络(Shallow neural networks) 神经网络概述(Neural Network Overview) 本周你将学习如何实现一个神经网络.在我们深入学习具体技术之前,我 ...
- PVANET----Deep but Lightweight Neural Networks for Real-time Object Detection论文记录
arxiv上放出的物体检测的文章,在Pascal voc数据集上排第二.源码也已放出(https://github.com/sanghoon/pva-faster-rcnn),又可以慢慢把玩了.这篇文 ...
- Coursera, Deep Learning 1, Neural Networks and Deep Learning - week4, Deep Neural Networks
Deep Neural Network Getting your matrix dimention right 选hyper-pamameter 完全是凭经验 补充阅读: cost 函数的计算公式: ...
- Coursera, Deep Learning 1, Neural Networks and Deep Learning - week1, Introduction to deep learning
整个deep learing 系列课程主要包括哪些内容 Intro to Deep learning
- Coursera, Deep Learning 1, Neural Networks and Deep Learning - week3, Neural Networks Basics
NN representation 这一课主要是讲3层神经网络 下面是常见的 activation 函数.sigmoid, tanh, ReLU, leaky ReLU. Sigmoid 只用在输出0 ...
- Coursera, Deep Learning 1, Neural Networks and Deep Learning - week2, Neural Networks Basics
Logistic regression Cost function for logistic regression Gradient Descent 接下来主要讲 Vectorization Logi ...
- ReLU——Deep Sparse Rectifier Neural Networks
1. 摘要 ReLU 相比 Tanh 能产生相同或者更好的性能,而且能产生真零的稀疏表示,非常适合自然就稀疏的数据. 采用 ReLU 后,在大量的有标签数据下,有没有无监督预训练模型取得的最好效果是一 ...
- DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
1.Introduction DL解决VO问题:End-to-End VO with RCNN 2.Network structure a.CNN based Feature Extraction 论 ...
- Combining STDP and Reward-Modulated STDP in Deep Convolutional Spiking Neural Networks for Digit Recognition
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract 灵长类视觉系统激发了深度人工神经网络的发展,使计算机视觉领域发生了革命性的变化.然而,这些网络的能量效率比它们的生物学对 ...
随机推荐
- 基于django的个人博客网站建立(四)
基于django的个人博客网站建立(四) 前言 网站效果可点击这里访问 今天主要添加了留言与评论在后台的管理和主页文章的分页显示,文章类别的具体展示以及之前预留链接的补充 主要内容 其实今天的内容和前 ...
- 54. Spiral Matrix && 59. Spiral Matrix II
Given a positive integer n, generate a square matrix filled with elements from 1 to n2 in spiral ord ...
- Hive参数调优
调优 Hive提供三种可以改变环境变量的方法,分别是: (1)修改${HIVE_HOME}/conf/hive-site.xml配置文件: 所有的默认配置都在${HIVE_HOME}/conf/hiv ...
- [译]Vulkan教程(10)交换链
[译]Vulkan教程(10)交换链 Vulkan does not have the concept of a "default framebuffer", hence it r ...
- SpringCloud微服务(07):Zipkin组件,实现请求链路追踪
本文源码:GitHub·点这里 || GitEE·点这里 一.链路追踪简介 1.Sleuth组件简介 Sleuth是SpringCloud微服务系统中的一个组件,实现了链路追踪解决方案.可以定位一个请 ...
- 指定节点滚动到屏幕中间的js
父节点的class是slimScrollDiv 子节点的class是fa-warning 执行这个js document.getElementsByClassName("slimScroll ...
- [灵魂拷问]MySQL面试高频100问(工程师方向)
作者:呼延十 juejin.im/post/5d351303f265da1bd30596f9 前言 本文主要受众为开发人员,所以不涉及到MySQL的服务部署等操作,且内容较多,大家准备好耐心和瓜子矿泉 ...
- node-express脚手架生成的项目中实现浏览器缓存
前言: 最近在做基于 node-express 的个人站点 朵朵视野 ,在站点发布之后自己在访问测试的过程中发现站点是没有缓存机制的,这样就导致每次访问站点都需要重新去加载资源,很消耗资源以及用户体验 ...
- React Native之React Navigation踩坑
自动重装系统之后,已经很长一段时间没有来写React Native了,今天空闲之余,决定重新配置React Native的开发环境,继续踩坑... React Native的开发环境配置狠简单,只要依 ...
- 由导入paramkio包失败,而pip list又能查到此包,而引出的:离线安装python第三方库的实用方法:解决公司内网,服务器/电脑不能上网却需要安装python三方库问题(下:Linux环境中)
问题描述: 公司的Linux服务器是内网,今天要实现某个功能,会用到python控制ssh,需要安装一个Paramkio库,和上一篇一样,仅仅依靠Pypi上下载下来的离线.whl安装包是不行的,lin ...