题目描述

给定正整数n,m。求
 

输入

一行两个整数n,m。

输出

一个整数,为答案模1000000007后的值。

样例输入

5 4

样例输出

424


题解

莫比乌斯反演

(为了方便,以下公式默认$n\le m$)

$\ \ \ \ \sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)^{gcd(i,j)}\\=\sum\limits_{d=1}^n\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)=d](\frac{ij}d)^d\\=\sum\limits_{d=1}^n\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}[gcd(i,j)=1](ijd)^d\\=\sum\limits_{d=1}^nd^d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}[gcd(i,j)=1](ij)^d\\=\sum\limits_{d=1}^nd^d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}(ij)^d\sum\limits_{p|gcd(i,j)}\mu(p)\\=\sum\limits_{d=1}^nd^d\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}\mu(p)\sum\limits_{i=1}^{\lfloor\frac n{dp}\rfloor}\sum\limits_{j=1}^{\lfloor\frac m{dp}\rfloor}(ijp^2)^d\\=\sum\limits_{d=1}^nd^d\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}p^{2d}\mu(p)\sum\limits_{i=1}^{\lfloor\frac n{dp}\rfloor}\sum\limits_{j=1}^{\lfloor\frac m{dp}\rfloor}i^dj^d\\=\sum\limits_{d=1}^nd^d\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}p^{2d}\mu(p)\sum\limits_{i=1}^{\lfloor\frac n{dp}\rfloor}i^d\sum\limits_{j=1}^{\lfloor\frac m{dp}\rfloor}j^d$

此时暴力即可。。。本题就做完了。。。复杂度竟然是对的。。。

快筛$\mu$,再先枚举$d$,然后处理出$1\sim\lfloor\frac md\rfloor$中每个数的$d$次方及其前缀和。由于$d$是从小到大枚举的,因此可以递推出来。

然后只需要先用快速幂求$d^d$,其余的对于每一个$p$均可$O(1)$解出(其中$p^2d=(p^d)^2$),因此总的时间复杂度是每次快速幂的时间复杂度$O(n\log n)$+调和级数时间复杂度$O(n\ln n)$=$O(n\log n)$。

#include <cstdio>
#include <algorithm>
#define N 500010
#define mod 1000000007
using namespace std;
typedef long long ll;
int mu[N] , np[N] , prime[N] , tot;
ll b[N] , sum[N];
inline ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int main()
{
int n , m , i , j;
ll d , ans = 0;
scanf("%d%d" , &n , &m);
if(n > m) swap(n , m);
mu[1] = 1;
for(i = 2 ; i <= n ; i ++ )
{
if(!np[i]) mu[i] = -1 , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= n ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else mu[i * prime[j]] = -mu[i];
}
}
for(i = 1 ; i <= m ; i ++ ) b[i] = 1;
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j * i <= m ; j ++ )
b[j] = b[j] * j % mod , sum[j] = (sum[j - 1] + b[j]) % mod;
d = pow(i , i);
for(j = 1 ; j * i <= n ; j ++ )
ans = (ans + mu[j] * b[j] * b[j] % mod * d % mod * sum[n / i / j] % mod * sum[m / i / j] % mod + mod) % mod;
}
printf("%lld\n" , ans);
return 0;
}

【bzoj3561】DZY Loves Math VI 莫比乌斯反演的更多相关文章

  1. BZOJ3561 DZY Loves Math VI 莫比乌斯反演

    传送门 看到\(gcd\)相关先推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M (lcm(i ...

  2. BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析

    推到了一个推不下去的形式,然后就不会了 ~ 看题解后傻了:我推的是对的,推不下去是因为不需要再推了. 复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~ code: #i ...

  3. 【BZOJ3309】DZY Loves Math(莫比乌斯反演)

    [BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...

  4. [BZOJ3561] DZY Loves Math VI

    (14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...

  5. BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)

    一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...

  6. DZY LOVES MATH (莫比乌斯反演)

    OK!开始更新莫比乌斯反演 先看了一下数据范围,嗯,根据\(jiry\)老师的真言,我们一定是可以筛一遍然后用根号或者是\(log\)的算法. 题目思路挺简单,就是把原始的式子化成: \(\sum_{ ...

  7. BZOJ3561 DZY Loves Math VI 数论 快速幂 莫比乌斯反演

    原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目 ...

  8. BZOJ3561 DZY Loves Math VI 【莫比乌斯反演】

    题目 给定正整数n,m.求 输入格式 一行两个整数n,m. 输出格式 一个整数,为答案模1000000007后的值. 输入样例 5 4 输出样例 424 提示 数据规模: 1<=n,m<= ...

  9. DZY Loves Math(莫比乌斯反演)

    \(x=p_1^{\alpha_1}p_2^{\alpha_2}...p_c^{\alpha_c}\) \(f(x)=\max(\alpha_1,\alpha_2,...,\alpha_c)\) \( ...

随机推荐

  1. lambda函数,内置map()函数及filter()函数

    8.1 lambda函数 作用及意义:  1.没必要专门定义函数,给函数起名,起到精简的效果  2.简化代码的可读性 def ds(x): return 2 * x + 1 ds(5) ---11 g ...

  2. MySQL-常用的存储引擎

    MySQL-常用的存储引擎 存储引擎 事务 锁粒度 主要应用 忌用 MyISAM 不支持 支持并发插入的表级锁 select,insert 读写操作频繁 MRG_MYISAM 不支持 支持并发插入的表 ...

  3. iOS网络图片缓存详解

    在开发移动应用的时候比如Android,IOS,因为手机流量.网速.内存等这些因素,当我们的移动应用是针对互联网,并要频繁访问网络的话,对网络优化这块就显得尤为重要了. 比如某个应用要经常显示网络图片 ...

  4. 基于Ceph分布式集群实现docker跨主机共享数据卷

    上篇文章介绍了如何使用docker部署Ceph分布式存储集群,本篇在此基础之上,介绍如何基于Ceph分布式存储集群实现docker跨主机共享数据卷. 1.环境准备 在原来的环境基础之上,新增一台cen ...

  5. python核心编程2 第五章 练习

    5-2 运算符(a) 写一个函数,计算并返回两个数的乘积(b) 写一段代码调用这个函数,并显示它的结果 def product(x, y): return x * y if __name__ == ' ...

  6. 【Python 2 到 3 系列】 关于除法的余数

    v2.2 以前,除("/")运算符的返回有两种可能情况,分别是整型和浮点型.操作数的不同,是影响计算结果数据类型的关键. 以 a / b 为例,a.b均为整型,则结果返回整型:a. ...

  7. Python全栈day 06

    Python全栈day 06 一.数据类型补充完整 1. 列表(list) 反转reverse list1 = [1,2,3,4,5,6,7,8,9] list1.reverse() print(li ...

  8. Hadoop常用高级特性

    HDFS HA HDFS HA(High Availability)高可用性 相同版本拷贝工具,分布式集群拷贝工具,使用MapReduce实现 DistCp Version2 Guide HFTP协议 ...

  9. 为什么不要使用 Async Void ?

    原文:为什么不要使用 Async Void ? 问题 在使用 Abp 框架的后台作业时,当后台作业抛出异常,会导致整个程序崩溃.在 Abp 框架的底层执行后台作业的时候,有 try/catch 语句块 ...

  10. [工具使用]xshell 中“快速命令集”的使用

    突然看到朋友的xshell比我多一个按钮,且一点,哈哈哈 ,实现了很炫酷的功能,耐不住好奇,问了一句,原来是快速命令集! 1.选择快速命令集(两种方法a&b) a:文件 > 属性 > ...