【bzoj3561】DZY Loves Math VI 莫比乌斯反演
题目描述

输入
输出
样例输入
5 4
样例输出
424
题解
莫比乌斯反演
(为了方便,以下公式默认$n\le m$)
$\ \ \ \ \sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)^{gcd(i,j)}\\=\sum\limits_{d=1}^n\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)=d](\frac{ij}d)^d\\=\sum\limits_{d=1}^n\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}[gcd(i,j)=1](ijd)^d\\=\sum\limits_{d=1}^nd^d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}[gcd(i,j)=1](ij)^d\\=\sum\limits_{d=1}^nd^d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}(ij)^d\sum\limits_{p|gcd(i,j)}\mu(p)\\=\sum\limits_{d=1}^nd^d\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}\mu(p)\sum\limits_{i=1}^{\lfloor\frac n{dp}\rfloor}\sum\limits_{j=1}^{\lfloor\frac m{dp}\rfloor}(ijp^2)^d\\=\sum\limits_{d=1}^nd^d\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}p^{2d}\mu(p)\sum\limits_{i=1}^{\lfloor\frac n{dp}\rfloor}\sum\limits_{j=1}^{\lfloor\frac m{dp}\rfloor}i^dj^d\\=\sum\limits_{d=1}^nd^d\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}p^{2d}\mu(p)\sum\limits_{i=1}^{\lfloor\frac n{dp}\rfloor}i^d\sum\limits_{j=1}^{\lfloor\frac m{dp}\rfloor}j^d$
此时暴力即可。。。本题就做完了。。。复杂度竟然是对的。。。
快筛$\mu$,再先枚举$d$,然后处理出$1\sim\lfloor\frac md\rfloor$中每个数的$d$次方及其前缀和。由于$d$是从小到大枚举的,因此可以递推出来。
然后只需要先用快速幂求$d^d$,其余的对于每一个$p$均可$O(1)$解出(其中$p^2d=(p^d)^2$),因此总的时间复杂度是每次快速幂的时间复杂度$O(n\log n)$+调和级数时间复杂度$O(n\ln n)$=$O(n\log n)$。
#include <cstdio>
#include <algorithm>
#define N 500010
#define mod 1000000007
using namespace std;
typedef long long ll;
int mu[N] , np[N] , prime[N] , tot;
ll b[N] , sum[N];
inline ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int main()
{
int n , m , i , j;
ll d , ans = 0;
scanf("%d%d" , &n , &m);
if(n > m) swap(n , m);
mu[1] = 1;
for(i = 2 ; i <= n ; i ++ )
{
if(!np[i]) mu[i] = -1 , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= n ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else mu[i * prime[j]] = -mu[i];
}
}
for(i = 1 ; i <= m ; i ++ ) b[i] = 1;
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j * i <= m ; j ++ )
b[j] = b[j] * j % mod , sum[j] = (sum[j - 1] + b[j]) % mod;
d = pow(i , i);
for(j = 1 ; j * i <= n ; j ++ )
ans = (ans + mu[j] * b[j] * b[j] % mod * d % mod * sum[n / i / j] % mod * sum[m / i / j] % mod + mod) % mod;
}
printf("%lld\n" , ans);
return 0;
}
【bzoj3561】DZY Loves Math VI 莫比乌斯反演的更多相关文章
- BZOJ3561 DZY Loves Math VI 莫比乌斯反演
传送门 看到\(gcd\)相关先推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M (lcm(i ...
- BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析
推到了一个推不下去的形式,然后就不会了 ~ 看题解后傻了:我推的是对的,推不下去是因为不需要再推了. 复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~ code: #i ...
- 【BZOJ3309】DZY Loves Math(莫比乌斯反演)
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...
- [BZOJ3561] DZY Loves Math VI
(14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...
- BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)
一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...
- DZY LOVES MATH (莫比乌斯反演)
OK!开始更新莫比乌斯反演 先看了一下数据范围,嗯,根据\(jiry\)老师的真言,我们一定是可以筛一遍然后用根号或者是\(log\)的算法. 题目思路挺简单,就是把原始的式子化成: \(\sum_{ ...
- BZOJ3561 DZY Loves Math VI 数论 快速幂 莫比乌斯反演
原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目 ...
- BZOJ3561 DZY Loves Math VI 【莫比乌斯反演】
题目 给定正整数n,m.求 输入格式 一行两个整数n,m. 输出格式 一个整数,为答案模1000000007后的值. 输入样例 5 4 输出样例 424 提示 数据规模: 1<=n,m<= ...
- DZY Loves Math(莫比乌斯反演)
\(x=p_1^{\alpha_1}p_2^{\alpha_2}...p_c^{\alpha_c}\) \(f(x)=\max(\alpha_1,\alpha_2,...,\alpha_c)\) \( ...
随机推荐
- Oracle Like、Instr以及正则表达式
查看测试数据 select * from student; 1. like 在where字句中使用like可以达到模糊查询的效果,常用通配符如下 ▶ %: 使用 % 有三种情况 ① 字段 like ‘ ...
- MyEclipse的快捷键大全(超级实用,方便)
常用快捷键 1. [ALT+/] 能为用户提供内容的辅助,不要为记不全方法和属性名称犯愁,当记不全类.方法和属性的名字时,多体验一下[ALT+/]快捷键带来的好处吧. 2. [Ctrl+O] 显示类 ...
- Linux - bashrc之alias
1. cd ~ 2. touch .bashrc // 若该文件不存在的话 3. vim .bashrc ----------------复制粘贴如下文本--------------- # alias ...
- tcp回显客户端发送的数据
客户端: import socket tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcp_socket.connect ...
- 用python画小猪佩奇(非原创)
略作改动: # coding:utf-8 import turtle as t t.screensize(400, 300, "blue") t.pensize(4) # 设置画笔 ...
- JavaScript编码加密
网上看到的加密方法: JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:unescape,deco ...
- 图解HTTP总结(2)——简单的HTTP协议
HTTP协议是一种不保存状态,即无状态(stateless)协议.HTTP协议自身不对请求和响应之间的通信状态进行保存.也就是说在HTTP这个级别,协议对于发送过的请求或响应都不做持久化处理. 使用H ...
- 如何在CentOS 7.1中安装VMware Workstation
VMware Workstation在windows环境中大家都会安装,最近公司有个需求是需要在CentOS环境中安装VMware Workstation,上官网查了下还真有Linux版本的,于是就开 ...
- 找回被丢弃怎么找都找不回来的git中的commit
崩溃的一天,打算提代码走人,结果切分支之后,commit丢了= =,找了三个多小时 接下来分享下如何找回丢失的commit的 打开项目所在位置,打开git bash,在gitBASH中输入 git f ...
- Matplotlib库介绍
pyplot的plot()函数 pyplot的中文显示 pyplot的文本显示 pyplot的子绘图区域