题意

基环树上找到一个点(可以在边上)使得它到树上最远点的距离最小,输出最小距离

题解

如果是一棵树,答案就是树的直径\(/2\)

如果是基环树,那么很好证明删去环上的某一条边是不影响答案的。于是断环为链,单调队列维护\(dep+sum,dep-sum\)的最大值和次大值,然后算直径,如果两个最大值是同个结点就取一个次大,否则都取最大。

#include <algorithm>
#include <cstdio>
using namespace std; typedef long long ll; const int N = 1e5 + 10; struct Edge {
int v, w, nxt;
} e[N << 1];
int hd[N], p;
void link(int u, int v, int w) {
e[p] = (Edge) {v, w, hd[u]};
hd[u] = p ++;
} int n, dfn[N], idx;
int fa[N], fw[N], c[N], d[N], cnt;
bool cir[N]; void dfs(int u, int cur = -1) {
dfn[u] = ++ idx;
for(int i = hd[u]; ~ i; i = e[i].nxt) if(i != cur) {
int v = e[i].v, w = e[i].w;
if(!dfn[v]) {
fa[v] = u; fw[v] = w; dfs(v, i ^ 1);
} else if(dfn[v] < dfn[u]) {
cnt ++; cir[c[cnt] = u] = 1; d[cnt] = w;
for(int j = u; j != v; j = fa[j]) {
cnt ++; cir[c[cnt] = fa[j]] = 1; d[cnt] = fw[j];
}
}
}
} ll mdep[N][2], tree_d; void dfs2(int u, int f = -1) {
for(int i = hd[u]; ~ i; i = e[i].nxt) {
int v = e[i].v;
if(v == f || cir[v]) continue ;
dfs2(v, u);
ll dis = e[i].w + mdep[v][0];
if(dis > mdep[u][0]) {
mdep[u][1] = mdep[u][0];
mdep[u][0] = dis;
} else if(dis > mdep[u][1]) {
mdep[u][1] = dis;
}
}
tree_d = max(tree_d, mdep[u][0] + mdep[u][1]);
} int main() {
scanf("%d", &n);
fill(hd + 1, hd + n + 1, -1);
for(int u, v, w, i = 1; i <= n; i ++) {
scanf("%d%d%d", &u, &v, &w);
link(u, v, w); link(v, u, w);
}
dfs(1);
static ll dep[N << 1], sum[N << 1], ans = 1ll << 62;
for(int i = 1; i <= cnt; i ++) {
dfs2(c[i]);
dep[i] = dep[i + cnt] = mdep[c[i]][0];
}
for(int i = 1; i <= cnt << 1; i ++)
sum[i] = sum[i - 1] + d[i > cnt ? i - cnt : i]; static int q1[N << 1], l1, r1;
static int q2[N << 1], l2, r2;
#define val1(u) dep[u] - sum[u]
#define val2(u) dep[u] + sum[u]
for(int i = 1; i <= cnt << 1; i ++) {
for(; l1 < r1 && q1[l1] + cnt - 1 < i; l1 ++) ;
for(; r1 - l1 > 1 && q1[l1 + 1] + cnt - 1 < i; l1 ++) q1[l1 + 1] = q1[l1];
for(; l2 < r2 && q2[l2] + cnt - 1 < i; l2 ++) ;
for(; r2 - l2 > 1 && q2[l2 + 1] + cnt - 1 < i; l2 ++) q2[l2 + 1] = q2[l2]; for(; r1 - l1 > 2 && val1(q1[r1 - 1]) <= val1(i); r1 --) ;
q1[r1 ++] = i;
if(r1 - l1 <= 3) {
for(int j = r1 - 1; j > l1; j --)
if(val1(q1[j]) > val1(q1[j - 1])) swap(q1[j], q1[j - 1]);
}
for(; r2 - l2 > 2 && val2(q2[r2 - 1]) <= val2(i); r2 --) ;
q2[r2 ++] = i;
if(r2 - l2 <= 3) {
for(int j = r2 - 1; j > l2; j --)
if(val2(q2[j]) > val2(q2[j - 1])) swap(q2[j], q2[j - 1]);
}
if(i >= cnt && r1 - l1 > 1) {
int a1 = q1[l1], a2 = q1[l1 + 1];
int b1 = q2[l2], b2 = q2[l2 + 1];
ll cir_d = 0;
if(a1 == b1) cir_d = max(val1(a1) + val2(b2), val1(a2) + val2(b1));
else cir_d = val1(a1) + val2(b1);
ans = min(ans, max(tree_d, cir_d));
}
}
printf("%lld.%c\n", ans >> 1, ans & 1 ? '5' : '0');
return 0;
}

\(\text{Codeforces 835F}\)是一样的题,数据范围乘\(2\),改一下输出就行.

什么,\(\text{Wrong Answer}\)?

我觉得这是一个错误的解法,回头有时间更新一种用前后缀的做法。

如果我几个月都没更 可以在评论里捶我

「BZOJ 3242」「NOI 2013」快餐店「基环树」的更多相关文章

  1. 「BZOJ 1791」「IOI 2008」Island「基环树」

    题意 求基环树森林所有基环树的直径之和 题解 考虑的一个基环树的直径,只会有两种情况,第一种是某个环上结点子树的直径,第二种是从两个环上结点子树内的最深路径,加上环上这两个结点之间的较长路径. 那就找 ...

  2. Solution -「基环树」做题记录

    写的大多只是思路,比较简单的细节和证明过程就不放了,有需者自取. 基环树简介 简单说一说基环树吧.由名字扩展可得这是一类以环为基础的树(当然显然它不是树. 通常的表现形式是一棵树再加一条非树边,把图画 ...

  3. 【BZOJ 3242】【UOJ #126】【CodeVS 3047】【NOI 2013】快餐店

    http://www.lydsy.com/JudgeOnline/problem.php?id=3242 http://uoj.ac/problem/126 http://codevs.cn/prob ...

  4. BZOJ - 3242 :快餐店 (基环树DP) 最小化半径

    题意:给定N点N边的无向连通图,现在让你在图中找一点作为餐厅,使得最远点距离这点最近. 思路:为了保留整数,我们求最小直径,最后去除2.  直径来源于两部分: 1,在外向树中: 那么就是树的直接,一棵 ...

  5. bzoj 2878: [Noi2012]迷失游乐园【树上期望dp+基环树】

    参考:https://blog.csdn.net/shiyukun1998/article/details/44684947 先看对于树的情况 设d[u]为点u向儿子走的期望长度和,du[u]为u点的 ...

  6. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

  7. 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...

  8. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  9. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

随机推荐

  1. hl7消息中和时间有关的字段的格式

    hl7消息中有许多segment(段)包含时间类型的Field.常用的MSH, EVN, PID中的时间字段及其格式为: 1. MSH-7, Date/time Of Message为yyyyMMdd ...

  2. (转)通过WMI获取网卡MAC地址、硬盘序列号、主板序列号、CPU ID、BIOS序列号

    最近由于项目的需要,需要在程序中获取机器的硬盘序列号和MAC地址等信息,在C#下,可以很容易的获得这些信息,但是在C++程序中感觉比较麻烦.经过百度,发现很多大虾都是通过WMI来获取这些硬件信息的,网 ...

  3. Azure VM复制

    目前Azure上复制VM可以有多种方法: 1 创建User Image,可以快速复制多台VM,但目前托管磁盘只支持Generalized的模式,需要对User和配置进行重置. 2 从VHD或托管磁盘复 ...

  4. 通过maven的jar包库找到对应的jar包。

    查找连接: http://search.maven.org/ 查找实例 http://search.maven.org/#search|ga|1|a%3A%22log4j%22

  5. [C++] 贪心算法之活动安排、背包问题

    一.贪心算法的基本思想 在求解过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解. 从贪心算法的定义可以看出,贪心算法不是从整体上考 ...

  6. LINUX必须记住的指令

    写在前面: 1,<你一定要知道的关于Linux文件目录操作的12个常用命令>是楼主收集的关于Linux文件目录操作最常用的命令,包括文件或目录的新建.拷贝.移动.删除.查看等,是开发人员操 ...

  7. SpringBoot JPA 中无法注入 JpaRepository 接口的问题及解决方案

    错误: 在Springboot  框架中使用JPA的过程中,怎么来实现数据库操作底层的交互呢?Spring JPA其实已经提供了一套很全面的解决方案,实现对数据库的增.删.查.改只需要继承JPA实现类 ...

  8. 第15届浙江省赛 D Sequence Swapping(dp)

    Sequence Swapping Time Limit: 1 Second      Memory Limit: 65536 KB BaoBao has just found a strange s ...

  9. jdbcTemplate学习(二)

    前面讲了增加.删除.更新操作,这节讲一下查询. 查询操作: (一)查询一个值(不需要注入参数) queryForObject(String sql, Class<T> requiredTy ...

  10. 类型:Ajax;问题:ajax调用ashx参数获取不到;结果:ashx文件获取$.ajax()方法发送的数据

    ashx文件获取$.ajax()方法发送的数据 今天在使用Jquery的ajax方法发送请求时,发现在后台中使用ashx文件无法接收到ajax方法中传递的参数,上网查了一下原因后发现了问题所在,原来是 ...