[BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛
题目大意:
给定\(n\le 10^9\),求:
1.\(\sum_{i=1}^n\mu(i^2)\)
2.\(\sum_{i=1}^n\varphi(i^2)\)
解释
1.\(\sum_{i=1}^n\mu(i^2)\)
直接输出1
因为对于\(\forall i>1\)有\(\mu (i^2)=0\)
2.\(\sum_{i=1}^n\varphi(i^2)\)
for 杜教筛:
构造函数\(f(i)=\varphi(i^2)\),则有\(f*\mathrm{id}=id^2\),具体推导:
\(\sum_{d|n}\varphi(d^2)\frac n d=\sum_{d|n}d\varphi(d)\frac n d=n\sum_{d|n}d=n^2\)
杜教板子:(风格不太清真,好久以前写的)
#include <bits/stdc++.h>
#define maxn 3000010
#define p 1000000007
#define int long long
using namespace std;
map<int, long long> ans_phi;
bool vis[maxn];
int prime[maxn], tot;
long long phi[maxn];
long long inv2, inv6;
long long qpow(long long a, long long b)
{
long long res = 1;
while (b > 0)
{
if (b & 1)
res = res * a % p;
a = a * a % p;
b >>= 1;
}
return res;
}
void prework()
{
inv2 = qpow(2, p - 2);
inv6 = qpow(6, p - 2);
phi[1] = 1;
for (int i = 2; i <= 3000000; i++)
{
if (vis[i] == 0)
{
prime[++tot] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= tot && prime[j] * i <= 3000000; j++)
{
vis[i * prime[j]] = 1;
if (i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j] % p;
break;
}
else
phi[i * prime[j]] = phi[i] * (prime[j] - 1) % p;
}
phi[i] = i * phi[i] % p;
(phi[i] += phi[i - 1]) %= p;
}
}
long long S_phi(int n)
{
if (n <= 3000000)
return phi[n];
if (ans_phi.count(n))
return ans_phi[n];
long long ans = 1LL * (2 * n + 1) * (n + 1) % p * n % p * inv6 % p;
for (int l = 2, r; l <= n; l = r + 1)
{
r= n / (n / l);
ans = ((ans - (r - l + 1) * (l + r) % p * S_phi(n / l) % p * inv2 % p) % p + p) % p;
}
return ans_phi[n] = ans;
}
void read(int &x)
{
static char ch;
x = 0;
ch = getchar();
while (!isdigit(ch))
ch = getchar();
while (isdigit(ch))
{
x = x * 10 + ch - 48;
ch = getchar();
}
}
signed main()
{
prework();
// int T;
// read(T);
// for (int n, i = 1; i <= T; i++)
// {
int n;
read(n);
printf("1\n%lld\n", S_phi(n));
// }
return 0;
}
for Min_25筛:
\(f(p)=\varphi(p^2)=p\varphi(p)=p^2-p\)
对于质数我们需要筛一个g2,一个g1,方便判断质数最好再筛一个g0
快速计算\(f(p^k)\)部分也可以参考Sum的Min_25筛写法
这题可以。。。写Min_25筛 后天再写
[BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛的更多相关文章
- BZOJ4916: 神犇和蒟蒻(杜教筛)
题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...
- 【BZOJ4916】神犇和蒟蒻 杜教筛
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916 第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑 ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- BZOJ4916: 神犇和蒟蒻【杜教筛】
Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...
- BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】
题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...
- BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)
第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...
- Bzoj4916: 神犇和蒟蒻
题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...
- 【BZOJ4916】神犇和蒟蒻(杜教筛)
[BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...
- 【BZOJ4916】神犇和蒟蒻 解题报告
[BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...
随机推荐
- 关于java中getClass()和getSuperClass()的讲解
为了讲解这个问题,我们先来看一下下面的代码: package com.yonyou.test; import java.util.Date; class Test extends Date{ priv ...
- 解决django不能以本机ip地址访问
在使用django框架来架设网站时,我们测试一般是通过django的开发服务器来完成,但是我们可以看到生成的地址是127.0.0.1:8000这样的话,我们在外网就无法访问了. 解决办法是通过传入第三 ...
- vue-cli脚手架build目录中的karma.conf.js配置文件
本文系统讲解vue-cli脚手架build目录中的karma.conf.js配置文件 这个配置文件是命令 npm run unit 的入口配置文件,主要用于单元测试 这条命令的内容如下 "c ...
- linux环境下Apache+Tomcat集群配置
写在前面 apache配置多个tomcat,实现请求分流,多个tomcat服务均衡负载,增加服务的可靠性.最近研究了一下,遇到许多问题,记录一下,方便以后查阅,不喜欢apache,nginx也是可以做 ...
- javascript——对象的概念——内建对象
包括内建对象的所有对象都是Object对象的子对象. 1.Array():构建数组的内建构造器函数 例:创建数组方式有两种: 2.Boolean:是对象,与基本数据类型 布尔值 不相同 例:创建Boo ...
- 问题:oracle if;结果:Oracle IF语句的使用
oracle 之if..else用法 oracle条件分支用法 a.if...then b.if...then... else c.if...then... elsif.... else 实例 1 问 ...
- 监控和安全运维 1.2 cacti安装
---恢复内容开始--- 一.安装cacti服务器 1.首先安装epm扩展源 rpm -ivh http://www.lishiming.net/data/attachment/forum/epel- ...
- C/C++下测量函数运行时间
C/C++下测量函数运行时间 time.h介绍 C/C++中的计时函数是clock(),而与其相关的数据类型是clock_t. clock_t clock( void ); 这个函数返回从" ...
- The Independent JPEG Group's JPEG software Android源码中 JPEG的ReadMe文件
The Independent JPEG Group's JPEG software========================================== README for rele ...
- iOS 聊天界面
#import <UIKit/UIKit.h> @interface AppDelegate : UIResponder <UIApplicationDelegate> @pr ...