D - Joyful

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Sakura has a very magical tool to paint walls. One day, kAc asked Sakura to paint a wall that looks like an $M \times N$ matrix. The wall has $M \times N$ squares in all. In the whole problem we denotes $(x, y)$ to be the square at the $x$-th row, $y$-th column. Once Sakura has determined two squares $(x_1, y_1)$ and $(x_2, y_2)$, she can use the magical tool to paint all the squares in the sub-matrix which has the given two squares as corners.

However, Sakura is a very naughty girl, so she just randomly uses the tool for $K$ times. More specifically, each time for Sakura to use that tool, she just randomly picks two squares from all the $M \times N$ squares, with equal probability. Now, kAc wants to know the expected number of squares that will be painted eventually.

 

Input

The first line contains an integer $T$($T \le 100$), denoting the number of test cases.

For each test case, there is only one line, with three integers $M, N$ and $K$. 
It is guaranteed that $1 \le M, N \le 500$, $1 \le K \le 20$. 

 

Output

For each test case, output ''Case #t:'' to represent the $t$-th case, and then output the expected number of squares that will be painted. Round to integers.
 

Sample Input

2
3 3 1
4 4 2
 

Sample Output

Case #1: 4
Case #2: 8

Hint The precise answer in the first test case is about 3.56790123.

题意:有t组数据,每组输入m,n,k。表示有一个m*n的矩阵,在矩阵中随机取两个点(x1,y1),(x2,y2),以这两个点为矩形的两个顶点,画一个矩形,即矩形的四个顶点为(x1,y1),(x1,y2),(x2,y1),(x2,y2)。矩形中的所有点视为被染色,进行k次这样的操作,问该矩阵中被染色的格子的个数的期望。这两个点互不影响,也就是这两个点可以相同。每个点可以被多次染色,就是被染两次就算两次,不是算一次。

题解:因为(x1,y1),(x2,y2)这两个点是从矩阵中取的,第一个点有n*m种可能性,第二个点也有n*m种可能性,所以总的情况数为n*n*m*m。我们对矩阵中的每个点进行单独讨论,假设有这么一个点x,y。我们知道,x表示该点在第x行,y表示该点在第y列,那么如果取的那两个点(x1,y1),(x2,y2)都在1到x-1行或者都在x+1到m行之间或者都在1到y-1列之间或者都在y+1到n列之间,则(x,y)这个点不会被染色,将上面的四种情况可以看做是上下左右四种情况。根据容斥原理,我们要减去左上,左下,右上,右下这四种情况,这是因为上和左同时覆盖左上,以此类推。用该情况数除以总情况数所得概率p就是该点不被染色的概率,进行k次该操作,则tmp=p^k就是该点k次操作之后不被染色的概率,1-tmp就是该点被染色的概率,因为该点是一个点,所以概率就是期望,将每个点的期望加起来,就是结果了,注意四舍五入用%.0f就能实现,具体的有很多很多需要注意的细节问题请看代码注释。

#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long ll;
ll c(ll a,ll b)
{
return a*a*b*b;
}
int main()
{
/*1.用G++提交 C++慢 有可能都超时
2.用scanf写 cin慢 虽然在本题中一样
3.tmp用循环跑 pow慢*/
int t,cas=;
scanf("%d",&t);
while(t--)
{
ll n,m,k;//这里nm顺序无所谓
//注意这里一定要用long long,要不然计算的时候还得强制转化一下
scanf("%lld%lld%lld",&n,&m,&k);
ll ans,sum=n*n*m*m;
//ans除以sum求不被染色概率
//两个格子每个都有n*m种选择
double p,qiwang=;
//p表示该格子一次操作后不被染色的概率
//qiwang表示该格子被染色的概率也就是期望,因为是相对于一个格子而言的 乘数为1
for(int i=;i<=n;i++)//对每个格子进行讨论
for(int j=;j<=m;j++)
{
ans=;//初始化
//容斥原理
ans+=c(i-,m);
ans+=c(n-i,m);
ans+=c(n,j-);
ans+=c(n,m-j);
ans-=c(i-,j-);
ans-=c(i-,m-j);
ans-=c(n-i,j-);
ans-=c(n-i,m-j);
p=1.0*ans/sum;//该格子不被染色的概率
double tmp=;//初始化
//该格子k次操作后不被染色的概率
for(int i=;i<k;i++)//pow返回double 不要用pow
tmp*=p;
//该格子被染色的概率也就是期望
qiwang+=-tmp;
}
// %0.f自动取整了 或者floor+0.5或者round函数也可以
printf("Case #%d: %.0lf\n",cas++,qiwang);
}
return ;
}

这个题之前把题目里的题号写错了,写成5345了。(流汗)

HDU 5245 Joyful(概率题求期望)的更多相关文章

  1. HDU 3853 LOOP (概率DP求期望)

    D - LOOPS Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St ...

  2. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  3. hdu 5245 Joyful(期望的计算,好题)

    Problem Description Sakura has a very magical tool to paint walls. One day, kAc asked Sakura to pain ...

  4. J - Joyful HDU - 5245 (概率)

    题目链接: J - Joyful  HDU - 5245 题目大意:给你一个n*m的矩阵,然后你有k次涂色机会,然后每一次可以选定当前矩阵的一个子矩阵染色,问你这k次用完之后颜色个数的期望. 具体思路 ...

  5. HDU 5245 Joyful(期望)

    http://acm.hdu.edu.cn/showproblem.php?pid=5245 题意: 给出一个n*m的矩阵格子,现在有k次操作,每次操作随机选择两个格子作为矩形的对角,然后将这范围内的 ...

  6. POJ2096 Collecting Bugs(概率DP,求期望)

    Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...

  7. LightOJ 1030 【概率DP求期望】

    借鉴自:https://www.cnblogs.com/keyboarder-zsq/p/6216762.html 题意:n个格子,每个格子有一个值.从1开始,每次扔6个面的骰子,扔出几点就往前几步, ...

  8. HDU 5245 Joyful (期望)

    题意:进行K次染色,每次染色会随机选取一个以(x1,y1),(x2,y2)为一组对角的子矩阵进行染色,求K次染色后染色面积的期望值(四舍五入). 析:我们可以先求出每个格子的期望,然后再加起来即可.我 ...

  9. hdu 4405 Aeroplane chess(简单概率dp 求期望)

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. JavaScript高级程序设计第三版.CHM【带实例】

    从驱动全球商业.贸易及管理领域不计其数的复杂应用程序的角度来看,说 JavaScript 已经成为当今世界上最流行的编程语言一点儿都不为过. JavaScript 是一种非常松散的面向对象语言,也是 ...

  2. JZOJ| 5910. DuLiu

    Description          LF是毒瘤出题人中AK IOI2019,不屑于参加NOI的唯一的人.他对人说话,总是满口垃圾题目者也,教人半懂不懂的.因为他姓李,别人便从QQ群上的“毒瘤李F ...

  3. python scrapy 实战简书网站保存数据到mysql

    1:创建项目 2:创建爬虫 3:编写start.py文件用于运行爬虫程序 # -*- coding:utf-8 -*- #作者: baikai #创建时间: 2018/12/14 14:09 #文件: ...

  4. 在庫購買管理(MM)

    ■購買管理■ [購買依頼]ME51N: 登録ME52N: 変更ME53N: 照会 [購買発注]ME21N: 登録ME22N: 変更ME23N: 照会 [見積依頼]ME41: 登録ME42: 変更ME4 ...

  5. Nginx安装,目录结构与配置文件详解

    1.Nginx简介 Nginx(发音同 engine x)是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.由俄罗斯的程序设 ...

  6. HNOI2018 摸鱼记

    HNOI2018 摸鱼记 今天我又来记流水账啦 Day 0 颓废的一天. 我,球爷和杜教在颓膜膜.io ych看起来在搓碧蓝 鬼知道哥达鸭干了什么 学习氛围只局限在机房的一角 后来全体Oier开会,5 ...

  7. Tomcat详解及SNS系统的部署实现

    Tomcat详解及SNS系统的部署实现   http://jungege.blog.51cto.com/4102814/1409290

  8. C语言库函数实现 【微软面试100题 第八十三题】

    题目要求 1.strcpy/memcpy/memmove: 2.memset函数: 3.字符串处理函数. 题目分析 1.接口定义: char * strcpy(char * dest, const c ...

  9. 剑指Offer - 九度1373 - 整数中1出现的次数(从1到n整数中1出现的次数)

    剑指Offer - 九度1373 - 整数中1出现的次数(从1到n整数中1出现的次数)2014-02-05 23:03 题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直 ...

  10. 《Cracking the Coding Interview》——第14章:Java——题目1

    2014-04-26 18:20 题目:从继承的角度,把构造函数设成private有什么意义? 解法:就不能继承了.单体模式里也这么干,目的是为了不让使用者自主生成对象,进行限制. 代码: // 14 ...