好吧刚开始不知道自己在写什么,,,后来写了线性方程组,又过了一天一上午终于明白了。。。


当然题意很显然:求代价最小的极大线性无关组。

那就高斯消元(好吧刚开始我不会用它来解这道题qwq)

第一个循环是枚举消哪个元,即i; 然后去找有系数且代价最小的一行,特别地,如果所有行都没有系数,那么他就是自由元。。不计入答案;

然后就消就好了。。。

#include<cstdio>
#include<iostream>
#define R register int
using namespace std;
const int N=;
const long double eps=1E-;
long double a[N][N],c[N];
int n,m,k,cnt,ans;
inline bool ck0(double x) {return x<=eps&&x>=-eps;}
inline void Gauss() {
for(R i=;i<=m;++i) { R pos=;
for(R j=cnt+;j<=n;++j) if(!ck0(a[j][i])&&(pos==||c[pos]>c[j])) pos=j;
if(pos==) continue; ++cnt,ans+=c[pos];
if(pos!=cnt) swap(a[pos],a[cnt]),swap(c[pos],c[cnt]);
for(R j=cnt+;j<=n;++j) if(!ck0(a[j][i])) {
register long double t=a[j][i]/a[cnt][i];
for(R k=;k<=m;++k) a[j][k]-=a[cnt][k]*t;
}
}
}
signed main() {
scanf("%d %d",&n,&m); for(R i=;i<=n;++i) for(R j=;j<=m;++j) scanf("%Lf",&a[i][j]);
for(R i=;i<=n;++i) scanf("%Lf",&c[i]);
Gauss(); printf("%d %d\n",cnt,ans);
}

然后不知自己刚开始哪里写锅了。。。那就先锅着。。。


2019.05.14

Luogu P3265 [JLOI2015]装备购买的更多相关文章

  1. 洛谷P3265 [JLOI2015]装备购买 [线性基]

    题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...

  2. P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)

    题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...

  3. Luogu 3265 [JLOI2015]装备购买

    BZOJ 4004 把所有不能相互表示出来的向量都买下,一定能得到最大能买的方案数. 求解线性无关向量可以高斯消元,最后没有变成$0$向量的就是基底. 本题还要求代价最小怎么办?我们只要先把所有向量按 ...

  4. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

  5. bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 337  Solved: 139[Submit][Status ...

  6. BZOJ_4004_[JLOI2015]装备购买_线性基

    BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...

  7. [JLOI2015]装备购买 (高斯消元)

    [JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...

  8. BZOJ 4004: [JLOI2015]装备购买

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1154  Solved: 376[Submit][Statu ...

  9. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

随机推荐

  1. MySQL_西安11月销售昨日未上架的产品_20161212

    #C034西安11月销售昨日未上架的产品  SELECT 城市,a.订单日期,a.客户数,a.订单数,b.产品数,a.金额,c.销售确认额,c.毛利额,c.毛利率 FROM ( SELECT 城市,订 ...

  2. IronPython for ASP.NET 部署注意事项

    用 IronPython for ASP.NET 开发的网站,在部署时,除了发布 bin 目录下的 IronPython.dll, IronMath.dll, Microsoft.Web.IronPy ...

  3. bzoj 3083 遥远的国度 —— 树链剖分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3083 换根后路径还是不变,子树分类讨论一下,树剖后线段树维护即可. 代码如下: #inclu ...

  4. HDOJ1073(gets 应用)

    练习操作字符串的好题. #include<cstdio> #include<algorithm> #include<cstring> using namespace ...

  5. Ruby中print、p、puts的区别

    三个方法的作用都是将一个字符串打印到控制台  比较项目  puts  print p   换行符 末尾添加换行符  末尾不加换行符  末尾添加换行符  非字符串对象的输出  调用该对象的to_s方法 ...

  6. 8.ireport 取消自动分页,detail不分页

    转自:http://www.blogjava.net/vjame/archive/2013/10/12/404908.html 报表文件属性页面 lgnore pagination 勾选上,就可以取消 ...

  7. 华为USG6320做双线-基于源地址的策略路由

    通过配置策略路由实现不同源地址数据通过不同的链路转发. 组网需求 某企业公司拉了两条电信的光纤,分别为静态光纤和拨号光纤,前者主要用于服务器,后者则用于一般办公. 需求如下: 静态光纤:服务器专用 拨 ...

  8. Shape和 layer-list

    shape 基本使用 <?xml version="1.0" encoding="utf-8"?> <shape xmlns:android= ...

  9. javascript函数自执行里的this为什么指向window

    当你要确定“函数中的this是什么”的时候,永远不要到函数定义的地方去找答案!而是要到函数被调用的地方找答案! 具体说:函数里面的this的含义,是由它被调用的方式决定的. 换句话说,当你看到下面的代 ...

  10. ASP.NET MVC中的ActionFilter介绍学习

    一直都知道MVC中的ActionFilter,只是没有在实际项目中使用过. 顾名思义,ActionFilter就是指在Action上的Filter, 那么,在Action上的Filter到底有哪些呢. ...