BZOJ5323 JXOI2018 游戏
这是我见过的为数不多的良心九怜题之一。
题目大意
有一堆屋子,编号为$l,l+1...r-1,r$,你每次会走入一个没走入过的房子,然后这个房子以及编号为这个房子编号的倍数的房子就会被自动标记,对于每一种走入房子顺序的排列,对答案的贡献是最早使得所有房子都被标记的操作数,求所有排列对答案的贡献和。$1\leq l,r\leq 10^7$
题解
设$n=r-l+1$不难发现,有意义的走入只有$m$次($m$表示$[l,r]$内没有因数$\in[l,r]$的数的数量)。
每种排列对答案的贡献是这$m$个中最后一个被就走入的操作。
枚举最后一个被走入的时间$k$,则需要在前$k-1$个操作中安排$m-1$个位置,由于$m$个有意义操作和$n-m$个无意义操作内部的顺序是无所谓的,所以答案就是$$m!(n-m)!\sum\limits_{k=m}^{n}\dbinom{k-1}{m-1}$$。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define mod 1000000007
#define M 10000020
using namespace std;
int read(){
int nm=0,fh=1; char cw=getchar();
for(;!isdigit(cw);cw=getchar()) if(cw=='-') fh=-fh;
for(;isdigit(cw);cw=getchar()) nm=nm*10+(cw-'0');
return nm*fh;
}
int add(int x,int y){return (x+y>=mod)?x+y-mod:x+y;}
int mul(int x,int y){return (LL)x*(LL)y%mod;}
int L,R,n,m,fac[M],ifac[M],ans; bool vis[M];
int qpow(int x,int sq){
int res=1;
for(;sq;sq>>=1,x=mul(x,x)) if(sq&1) res=mul(res,x);
return res;
}
int C(int tot,int tk){return mul(fac[tot],mul(ifac[tk],ifac[tot-tk]));}
int main(){
L=read(),R=read(),n=R-L+1,fac[0]=1;
for(int i=1;i<=n;i++) fac[i]=mul(fac[i-1],i); ifac[n]=qpow(fac[n],mod-2);
for(int i=n;i>0;i--) ifac[i-1]=mul(ifac[i],i);
for(int i=L;i<=R;i++){
if(vis[i]) continue; m++;
for(int j=(i<<1);j<=R;j+=i) vis[j]=true;
}
for(int i=m;i<=n;i++) ans=add(ans,mul(i,C(i-1,m-1)));
printf("%d\n",mul(mul(fac[m],fac[n-m]),ans)); return 0;
}
BZOJ5323 JXOI2018 游戏的更多相关文章
- BZOJ5323 JXOI2018游戏(线性筛+组合数学)
可以发现这个过程非常类似埃氏筛,将在该区间内没有约数的数定义为质数,那么也就是求每种方案中选完所有质数的最早时间之和. 于是先求出上述定义中的质数个数,线性筛即可.然后对每个最短时间求方案数,非常显然 ...
- BZOJ5323 [Jxoi2018]游戏 【数论/数学】
题目链接 BZOJ5323 题解 有一些数是不能被别的数筛掉的 这些数出现最晚的位置就是该排列的\(t(p)\) 所以我们只需找出所有这些数,线性筛一下即可,设有\(m\)个 然后枚举最后的位置 \[ ...
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- [JXOI2018]游戏 (线性筛,数论)
[JXOI2018]游戏 \(solution:\) 这一道题的原版题面实在太负能量了,所以用了修改版题面. 这道题只要仔细读题,我们就可以将题目的一些基本性质分析出来:首先我们定义:对于某一类都可以 ...
- 【题解】JXOI2018游戏(组合数)
[题解]JXOI2018游戏(组合数) 题目大意 对于\([l,r]\)中的数,你有一种操作,就是删除一个数及其所有倍数.问你删除所有数的所有方案的步数之和. 由于这里是简化题意,有一个东西没有提到: ...
- BZOJ5323:[JXOI2018]游戏
传送门 不难发现,所有不能被其他数筛掉的数是一定要选的,只有选了这些数字才能结束 假设有 \(m\) 个,枚举结束时间 \(x\),答案就是 \(\sum \binom{x-1}{m-1}m!(n-m ...
- BZOJ5323 & 洛谷4562:[JXOI2018]游戏——题解
https://www.luogu.org/problemnew/show/P4562 https://www.lydsy.com/JudgeOnline/problem.php?id=5323 (B ...
- luogu P4562 [JXOI2018]游戏 组合数学
LINK:游戏 当L==1的时候 容易想到 答案和1的位置有关. 枚举1的位置 那么剩下的方案为(R-1)! 那么总答案为 (R+1)*R/2(R-1)! 考虑L==2的时候 对于一个排列什么时候会终 ...
- [JXOI2018]游戏
嘟嘟嘟 九条可怜竟然有这种良心题,似乎稍稍刷新了我对九条可怜的认识. 首先假设我们求出了所有必须要筛出来的数m,那么\(t(p)\)就只受最后一个数的位置影响. 所以我们枚举最后一个数的位置,然后用组 ...
随机推荐
- sql server 2008 去除html标签
由于商品详情数据库的字段是text,存放的是html,但是要求导出的商品详情中只是商品的描述,不要标签,原来打算先把数据导入excel中,然后利用java的正则去替换,结果由于商品详情太大,一个单元格 ...
- 【BZOJ2790】[Poi2012]Distance 筛素数+调和级数
[BZOJ2790][Poi2012]Distance Description 对于两个正整数a.b,这样定义函数d(a,b):每次操作可以选择一个质数p,将a变成a*p或a/p, 如果选择变成a/p ...
- 2015年11月26日 Java基础系列(七)正则表达式Regex
package com.demo.regex; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * @autho ...
- c# 怎么更改DataTable 中某列的值?
DataColumns dc = td.Columns["你的列"]; int inx = dc.Ordinal;td.Columns.Remove(dc);dc.DefaultV ...
- 九度OJ 1195:最长&最短文本 (搜索)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3144 解决:1156 题目描述: 输入多行字符串,请按照原文本中的顺序输出其中最短和最长的字符串,如果最短和最长的字符串不止一个,请全部输 ...
- 九度OJ 1002:Grading
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:18410 解决:4753 题目描述: Grading hundreds of thousands of Graduate Entrance ...
- A vectorized example
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture4.pdf
- linux c编程:信号(二) alarm和pause函数
使用alarm函数可以设置一个定时器,在将来的某个时刻该定时器超时.当定时器超时后,产生SIGALRM信号.如果忽略或不捕捉此信号,则其默认动作是终止调用该alarm函数的进程 #include< ...
- jauery table
$("#tableData tr:gt(0)").each(function() { }//橘色部分是查找id为tableData的DataTable里面除第一行以外的行
- CentOS 7.0 systemd
CentOS 7 已经切换到 systemd,系统指令也有所变化.之前用于启动.重启.停止各种服务的service 作为向后兼容的指令还能使用,但是将来可能会消失.同时,chkconfig 也改成了s ...