【题目链接】 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0531

【题目大意】

  给出一张图,和一些矩形障碍物,求该图没被障碍物覆盖的部分被划分为几个连通块

【题解】

  首先对图中的点进行离散化,对于一个障碍物来说,
  我们将其看做左闭右开上闭下开的图形,所以在离散的时候只要离散障碍物的点即可。
  之后我们利用imos积累法得出哪些部分是障碍物,就可以统计连通块了。

【代码】

#include <cstdio>
#include <vector>
#include <algorithm>
#include <cstring>
#include <utility>
#include <queue>
using namespace std;
const int N=1050,dx[]={1,-1,0,0},dy[]={0,0,1,-1};
int n,H,W,X1[N],X2[N],Y1[N],Y2[N];
int imos[2*N][2*N];
int compress(int *x1,int *x2,int w){
vector<int>xs;
for(int i=0;i<n;i++){
int tx1=x1[i],tx2=x2[i];
if(1<=tx1&&tx1<w)xs.push_back(tx1);
if(1<=tx2&&tx2<w)xs.push_back(tx2);
}xs.push_back(0);xs.push_back(w);
sort(xs.begin(),xs.end());
xs.erase(unique(xs.begin(),xs.end()),xs.end());
for(int i=0;i<n;i++){
x1[i]=find(xs.begin(),xs.end(),x1[i])-xs.begin();
x2[i]=find(xs.begin(),xs.end(),x2[i])-xs.begin();
}return xs.size()-1;
}
int bfs(){
int ans=0;
for(int i=0;i<H;i++){
for(int j=0;j<W;j++){
if(imos[i][j])continue;
ans++;
queue<pair<int,int> >que;
que.push(make_pair(j,i));
while(!que.empty()){
int nx=que.front().first,ny=que.front().second;
que.pop();
for(int i=0;i<4;i++){
int tx=nx+dx[i],ty=ny+dy[i];
if(tx<0||W<tx||ty<0||H<ty||imos[ty][tx]>0)continue;
que.push(make_pair(tx,ty));
imos[ty][tx]=1;
}
}
}
}return ans;
}
int main(){
while(~scanf("%d%d",&W,&H),W||H){
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%d%d%d%d",&X1[i],&Y1[i],&X2[i],&Y2[i]);
memset(imos,0,sizeof(imos));
W=compress(X1,X2,W);H=compress(Y1,Y2,H);
for(int i=0;i<n;i++){
imos[Y1[i]][X1[i]]++;
imos[Y1[i]][X2[i]]--;
imos[Y2[i]][X1[i]]--;
imos[Y2[i]][X2[i]]++;
}for(int i=0;i<H;i++)for(int j=1;j<W;j++)imos[i][j]+=imos[i][j-1];
for(int j=0;j<W;j++)for(int i=1;i<H;i++)imos[i][j]+=imos[i-1][j];
printf("%d\n",bfs());
}return 0;
}

  

AOJ 0531:Paint Color(二维离散+imos)的更多相关文章

  1. 多尺度二维离散小波重构waverec2

    clc,clear all,close all; load woman; [c,s]=wavedec2(X,2,'haar');%进行2尺度二维离散小波分解.分解小波函数haar %多尺度二维离散小波 ...

  2. 单尺度二维离散小波重构(逆变换)idwt2

    clc,clear all,close all; load woman; %单尺度二维离散小波分解.分解小波函数haar [cA,cH,cV,cD]=dwt2(X,'haar'); %单尺度二维离散小 ...

  3. 多尺度二维离散小波分解wavedec2

    对X进行N尺度小波分解 [C,S]=wavedec2(X,N,'wname'); clc,clear all,close all; load woman; [c,s]=wavedec2(X,2,'db ...

  4. 单尺度二维离散小波分解dwt2

    clc,clear all,close all; load woman; [cA,cH,cV,cD]=dwt2(X,'haar');%单尺度二维离散小波分解.分解小波函数haar figure,ims ...

  5. c语言数字图像处理(六):二维离散傅里叶变换

    基础知识 复数表示 C = R + jI 极坐标:C = |C|(cosθ + jsinθ) 欧拉公式:C = |C|ejθ 有关更多的时域与复频域的知识可以学习复变函数与积分变换,本篇文章只给出DF ...

  6. 混沌数学之CircuitChaotic(二维离散电路混沌系统)

    相关软件参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/link?url=yg_gE7LUXCg2mXRp-ZZdfRXXIkcNj8YOhvN7 ...

  7. 二维离散平稳小波重构iswt2

    clc,clear all,close all; load woman; [cA,cH,cV,cD]=swt2(X,2,'haar');%用haar小波基进行2尺度平稳小波分解 Y=iswt2(cA, ...

  8. 二维离散平稳小波分解swt2

    对信号X进行N尺度平稳小波分解 [A,H,V,D]=swt2(X,N,'wname'); clc,clear all,close all; load woman; [cA,cH,cV,cD]=swt2 ...

  9. Aizu - 0531 Paint Color

    白书例题,直接用书上的暴力压缩坐标是可以的,但是看了别人的博客的写法,大概是理解了思想但是看不懂为什么那么压缩,先放这,等明白了补上 #define debug #include<stdio.h ...

随机推荐

  1. python 3 使用cmp函数报错

    python3 中已经不使用cmp函数进行比较大小,使用operator模块 import operator lt(a,b) 相当于 a<b 从第一个数字或字母(ASCII)比大小 le(a,b ...

  2. disable-network-config

    network: {config: disabled}

  3. java_链表反转

    定义一个Node节点类 1 public class Node { 2 public int value; 3 public Node next; 4 5 public Node(int value) ...

  4. mysql语法结构

    环境:win7 64位.mysql 适合阅读者:对sql基本语法有一定了解 <建表语句>: create table <表名>( <列名> <类型> & ...

  5. HDU 4671 Backup Plan 构造

    负载是否平衡只与前两列有关,剩下的只要与前两列不重复就随便放. 第一列我们按1-n这样循环放,第二列每次找个数最少的那个服务器放. #include <cstdio> #include & ...

  6. mysql备份策略

    1.备份的种类 完全备份,就是备份整个数据库对象 事务日志备份, 备份事务日志记录上一次的数据库改变 增量备份,也叫差异备份 文件备份 2.备份方式 逻辑备份, 既备份sql语句,使用mysql自带的 ...

  7. RabbitMQ-Java客户端API指南-下

    RabbitMQ-Java客户端API指南-下 使用主机列表 可以将Address数组传递给newConnection().的地址是简单地在一个方便的类com.rabbitmq.client包与主机 ...

  8. 【bzoj3436】小K的农场 差分约束系统+最长路-Spfa

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801470.html 题目描述 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总 ...

  9. LeetCode -- Sum Root to Leaf NNumbers

    Related Links: Path Sum: http://www.cnblogs.com/little-YTMM/p/4529982.html Path Sum II: http://www.c ...

  10. freebsd网卡驱动程序详解

    freebsd网卡驱动程序详解 来源 https://blog.csdn.net/h_cszc/article/details/7776116 /* 注释:xie_minix */ /*此处为BSD申 ...