最近开始看斯坦福的公开课《Machine Learning》,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧。
【设想】
    最近想要租房,收集了一些信息,得知房价与房间大小有关,那成本函数就可以预测在不同房间大小下租房的价格(PS:价格可能也与该房地理有关,那若把大小和距离市中心距离一并考虑,则属于多参数的线性回归)
【数据】
    1、准备一个ex1data1.txt,第一列为年龄,第二列为价格
    2、导入matlab
          data = load('ex1data1.txt');
    3、赋值给不同的变量
          X = data(:,1);            %第一列年龄作为X
          y = data(:,2);             %第二列价格作为y
    4、查看导入的数据
          plot(X, y,'rx','MarkerSize',10);
         
         我们需要找到一条y=a+bx的直线(a=theta0,b=theta1),最大程度的拟合上图中的点,那如何取得a与b的值,则运用了成本函数,如下:
【公式】
         
                
【MatLab】
data = load('ex1data1.txt');
y = data(:,2);      %选取价格作为y变量

m = length(y);

X = [ones(m, 1), data(:,1)];   %选取房间大小作为第二列,第一列为1
theta0_vals = linspace(-3,3,100);    %确定theta0轴的范围为[-3,3],100个刻度
theta1_vals = linspace(-1,1,100);
for i=1:length(theta0_vals)          %循环执行computeCost函数,找到min(J_vals)的theta0和theta1值  
    for j=1:length(theta1_vals)
         t = [theta0_vals(i); theta1_vals(j)];
         J_vals(i,j) = computeCost(X, y, t);
    end
end
% Because of the way meshgrids work in the surf command, we need to 
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');


% eg:X(i,:)= [1,6] 
% eg:t= 
   

function J = computeCost(X, y, theta)
m = length(y); % 训练集个数
 
J = 0;
h=0;
for i= 1:m
    h = h + (theta' * X(i,:)'-y(i))^2;  %实现J(theta)公式的后半部
end
J = 1/(2*m)*h
end

eg:
,这就是为什么X变量要特地赋成两列,为了实现a+bx的矩阵效果

 
【可视化结果】
 
         

参考:
斯坦福机器学习的课后习题及程序:
下载

【Machine Learning】单参数线性回归 Linear Regression with one variable的更多相关文章

  1. [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率

    单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...

  2. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  3. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  4. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  5. Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)

    一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...

  6. Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)

    本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...

  7. 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)

    面积与房价 训练集 (Training Set) Size       Price 2104       460 852         178 ...... m代表训练集中实例的数量x代表输入变量 ...

  8. 吴恩达机器学习(二) 单变量线性回归(Linear Regression with one variable)

    一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(out ...

  9. 单变量线性回归(Linear Regression with One Variable)与代价函数

    所谓的单变量线性回归问题就是监督学习的一部分. 通过构建数学模型给出一个相对准确的数值,也就是预测模型,通过将数据通过数学模型,衍生至回归问题 通过以下的几个例子,我们来研究单变量线性回归. 1.王阿 ...

随机推荐

  1. Linux httpd 跳转简单方法一

    直接在httpd.conf中添加以下代码即可: NameVirtualHost *:80 <VirtualHost *:80> ServerName localhost ##访问域名 Re ...

  2. 浅谈javascript性能-管理内存

    上次说到,javascript脚本到底应该放在哪里?用什么用处? 以下2点: 在Html.Body部分中的JS会在页面加载的时候执行.即-用户触发一个事件的时候执行的脚本.eg:onload事件... ...

  3. AngularJS html5Mode与ASP.NET MVC路由

    AngularJS html5Mode与ASP.NET MVC路由共存 前言 很久之前便听说AngularJS,非常酷,最近也比较火,我也在持续关注这个技术,只是没有认真投入学习.前不久公司找我们部门 ...

  4. Installshield在安装结束时刷新系统

    原文:Installshield在安装结束时刷新系统 在OnEnd里添加代码,两种解决方案 群友kevin的解决方案 #include "ifx.h"  //Call to Win ...

  5. 使用线程执行堆栈StackTraceElement设计Android日志模块

    假设你想在你的Android自己主动打印程序MainActivity.onCreate(line:37)这样的类名.方法名称(行)登录如何实现? 1.介绍Java线程执行堆栈  Java.lang包中 ...

  6. ViewPaper实现轮播广告条

    使用V4包中的viewPaper组件自己定义轮播广告条效果. 实现viewpaper的滑动切换和定时自己主动切换效果. 上效果图 布局文件 <RelativeLayout xmlns:andro ...

  7. Invent 2014回顾

    AWS re:Invent 2014回顾   亚马逊在2014年11月11-14日的拉斯维加斯举行了一年一度的re:Invent大会.在今年的大会上,亚马逊一股脑发布和更新了很多服务.现在就由我来带领 ...

  8. POI操作Excel详细解释,HSSF和XSSF两种方式

    HSSF道路: package com.tools.poi.lesson1; import java.io.FileInputStream; import java.io.FileNotFoundEx ...

  9. Android有关Volley使用(十)至Request和Reponse意识

    我们知道,.网络Http沟通,会有一个Request,相同,也将有Response.我们Volley在使用RequestQueue来之前加入的请求.我们将创建一个Request对象,例StringRe ...

  10. setTimeout与setInterval的区别

    setTimeout与setInterval的区别:1.setTimeout设置后隔指定时间后只会执行一次2.setInterval设置后会每隔指定时间执行一次3.setTimeout一般在方法内部使 ...