Classification of text documents: using a MLComp dataset
注:原文代码链接http://scikit-learn.org/stable/auto_examples/text/mlcomp_sparse_document_classification.html
运行结果为:
Loading 20 newsgroups training set...
20 newsgroups dataset for document classification (http://people.csail.mit.edu/jrennie/20Newsgroups)
13180 documents
20 categories
Extracting features from the dataset using a sparse vectorizer
done in 139.231000s
n_samples: 13180, n_features: 130274
Loading 20 newsgroups test set...
done in 0.000000s
Predicting the labels of the test set...
5648 documents
20 categories
Extracting features from the dataset using the same vectorizer
done in 7.082000s
n_samples: 5648, n_features: 130274
Testbenching a linear classifier...
parameters: {'penalty': 'l2', 'loss': 'hinge', 'alpha': 1e-05, 'fit_intercept': True, 'n_iter': 50}
done in 22.012000s
Percentage of non zeros coef: 30.074190
Predicting the outcomes of the testing set
done in 0.172000s
Classification report on test set for classifier:
SGDClassifier(alpha=1e-05, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', n_iter=50, n_jobs=1,
penalty='l2', power_t=0.5, random_state=None, shuffle=True,
verbose=0, warm_start=False) precision recall f1-score support alt.atheism 0.95 0.93 0.94 245
comp.graphics 0.85 0.91 0.88 298
comp.os.ms-windows.misc 0.88 0.88 0.88 292
comp.sys.ibm.pc.hardware 0.82 0.80 0.81 301
comp.sys.mac.hardware 0.90 0.92 0.91 256
comp.windows.x 0.92 0.88 0.90 297
misc.forsale 0.87 0.89 0.88 290
rec.autos 0.93 0.94 0.94 324
rec.motorcycles 0.97 0.97 0.97 294
rec.sport.baseball 0.97 0.97 0.97 315
rec.sport.hockey 0.98 0.99 0.99 302
sci.crypt 0.97 0.96 0.96 297
sci.electronics 0.87 0.89 0.88 313
sci.med 0.97 0.97 0.97 277
sci.space 0.97 0.97 0.97 305
soc.religion.christian 0.95 0.96 0.95 293
talk.politics.guns 0.94 0.94 0.94 246
talk.politics.mideast 0.97 0.99 0.98 296
talk.politics.misc 0.96 0.92 0.94 236
talk.religion.misc 0.89 0.84 0.86 171 avg / total 0.93 0.93 0.93 5648 Confusion matrix:
[[227 0 0 0 0 0 0 0 0 0 0 1 2 1 1 1 0 1
0 11]
[ 0 271 3 8 2 5 2 0 0 1 0 0 3 1 1 0 0 1
0 0]
[ 0 7 256 14 5 6 1 0 0 0 0 0 2 0 1 0 0 0
0 0]
[ 1 8 12 240 9 3 12 2 0 0 0 1 12 0 0 1 0 0
0 0]
[ 0 1 3 6 235 2 4 0 0 0 0 1 3 0 1 0 0 0
0 0]
[ 0 17 9 4 0 260 0 0 1 1 0 0 2 0 2 0 1 0
0 0]
[ 0 1 3 7 3 0 257 7 2 0 0 1 8 0 1 0 0 0
0 0]
[ 0 0 0 2 1 0 5 305 2 3 0 0 4 1 0 0 1 0
0 0]
[ 0 0 0 0 1 0 3 3 285 0 0 0 1 0 0 1 0 0
0 0]
[ 0 0 0 0 0 0 3 2 0 305 2 1 1 0 0 0 0 0
1 0]
[ 0 0 0 0 0 0 1 0 1 0 300 0 0 0 0 0 0 0
0 0]
[ 0 0 1 1 0 2 0 1 0 0 0 284 0 1 1 0 2 2
1 1]
[ 0 2 2 10 2 2 6 5 1 0 1 1 279 1 1 0 0 0
0 0]
[ 0 3 0 0 1 1 1 0 0 0 0 0 0 269 0 1 1 0
0 0]
[ 0 5 0 0 1 0 0 0 0 0 2 0 1 0 295 0 0 0
1 0]
[ 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 282 1 0
0 3]
[ 0 0 1 0 0 0 0 0 1 3 0 0 1 0 0 1 232 1
5 1]
[ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 293
0 0]
[ 0 2 0 0 0 0 2 0 0 1 0 1 0 1 0 0 7 4
216 2]
[ 11 0 0 0 0 0 0 0 0 0 0 1 0 2 0 9 2 1
2 143]]
Testbenching a MultinomialNB classifier...
parameters: {'alpha': 0.01}
done in 0.608000s
Percentage of non zeros coef: 100.000000
Predicting the outcomes of the testing set
done in 0.203000s
Classification report on test set for classifier:
MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True) precision recall f1-score support alt.atheism 0.90 0.92 0.91 245
comp.graphics 0.81 0.89 0.85 298
comp.os.ms-windows.misc 0.87 0.83 0.85 292
comp.sys.ibm.pc.hardware 0.82 0.83 0.83 301
comp.sys.mac.hardware 0.90 0.92 0.91 256
comp.windows.x 0.90 0.89 0.89 297
misc.forsale 0.90 0.84 0.87 290
rec.autos 0.93 0.94 0.93 324
rec.motorcycles 0.98 0.97 0.97 294
rec.sport.baseball 0.97 0.97 0.97 315
rec.sport.hockey 0.97 0.99 0.98 302
sci.crypt 0.95 0.95 0.95 297
sci.electronics 0.90 0.86 0.88 313
sci.med 0.97 0.96 0.97 277
sci.space 0.95 0.97 0.96 305
soc.religion.christian 0.91 0.97 0.94 293
talk.politics.guns 0.89 0.96 0.93 246
talk.politics.mideast 0.95 0.98 0.97 296
talk.politics.misc 0.93 0.87 0.90 236
talk.religion.misc 0.92 0.74 0.82 171 avg / total 0.92 0.92 0.92 5648 Confusion matrix:
[[226 0 0 0 0 0 0 0 0 1 0 0 0 0 2 7 0 0
0 9]
[ 1 266 7 4 1 6 2 2 0 0 0 3 4 1 1 0 0 0
0 0]
[ 0 11 243 22 4 7 1 0 0 0 0 1 2 0 0 0 0 0
1 0]
[ 0 7 12 250 8 4 9 0 0 1 1 0 9 0 0 0 0 0
0 0]
[ 0 3 3 5 235 2 3 1 0 0 0 2 1 0 1 0 0 0
0 0]
[ 0 19 5 3 2 263 0 0 0 0 0 1 0 1 1 0 2 0
0 0]
[ 0 1 4 9 3 1 243 9 2 3 1 0 8 0 0 0 2 2
2 0]
[ 0 0 0 1 1 0 5 304 1 2 0 0 3 2 3 1 1 0
0 0]
[ 0 0 0 0 0 2 2 3 285 0 0 0 1 0 0 0 0 0
0 1]
[ 0 1 0 0 0 1 1 3 0 304 5 0 0 0 0 0 0 0
0 0]
[ 0 0 0 0 0 0 0 0 1 2 299 0 0 0 0 0 0 0
0 0]
[ 0 2 2 1 0 1 2 0 0 0 0 283 1 0 0 0 2 1
2 0]
[ 0 11 1 9 3 1 3 5 1 0 1 4 270 1 3 0 0 0
0 0]
[ 0 2 0 1 1 1 0 0 0 0 0 1 0 266 2 1 0 0
2 0]
[ 0 2 0 0 1 0 0 0 0 0 0 2 1 1 296 0 1 1
0 0]
[ 3 1 0 0 0 0 0 0 0 0 1 0 0 2 0 283 0 1
2 0]
[ 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 237 1
3 1]
[ 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 291
0 0]
[ 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 17 6
206 0]
[ 18 1 0 0 0 0 0 0 0 1 0 0 0 0 0 14 4 2
4 127]]
步骤为:
一、preprocessing
1.加载训练集(training set)
2.训练集特征提取,用TfidfVectorizer,得到训练集上的x_train和y_train
3.加载测试集(test set)
4.测试集特征提取,用TfidfVectorizer,得到测试集上的x_train和y_train
二、定义Benchmark classifiers
5.训练,clf = clf_class(**params).fit(X_train, y_train)
6.测试,pred = clf.predict(X_test)
7.测试集上分类报告,print(classification_report(y_test, pred,target_names=news_test.target_names))
8.confusion matrix,cm = confusion_matrix(y_test, pred)
三、训练
9.调用两个分类器,SGDClassifier和MultinomialNB


Classification of text documents: using a MLComp dataset的更多相关文章
- Clustering text documents using k-means
源代码的链接为http://scikit-learn.org/stable/auto_examples/text/document_clustering.html Loading 20 newsgro ...
- scikit-learn:4.2.3. Text feature extraction
http://scikit-learn.org/stable/modules/feature_extraction.html 4.2节内容太多,因此将文本特征提取单独作为一块. 1.the bag o ...
- Python scikit-learn机器学习工具包学习笔记
feature_selection模块 Univariate feature selection:单变量的特征选择 单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标 ...
- 特征选择 (feature_selection)
目录 特征选择 (feature_selection) Filter 1. 移除低方差的特征 (Removing features with low variance) 2. 单变量特征选择 (Uni ...
- sklearn—特征工程
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- scikit-learn:3.3. Model evaluation: quantifying the quality of predictions
參考:http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter 三种方法评估模型的预測质量: Est ...
- [Scikit-learn] 1.1 Generalized Linear Models - Comparing various online solvers
数据集分割 一.Online learning for 手写识别 From: Comparing various online solvers An example showing how diffe ...
- [Scikit-learn] Yield miniBatch for online learning.
From: Out-of-core classification of text documents Code: """ ======================= ...
- sklearn中的模型评估-构建评估函数
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scor ...
随机推荐
- rs.Open sql,conn,0,2,1
例子:rs.Open sql,conn,0,2,1 CursorType = 0,默认值,打开仅向前类型游标.LockType = 2, 开放式锁定Options = 1, 指示 ADO 生成 SQL ...
- zf-关于更换页面,的各种问题。
问题1:找不到common 这个变量(集合)与layer这个js文件. 这里的common 就是一个方法集合,声明var common; common.abc = function(参数1,参数2, ...
- Food on the Plane
Food on the Plane time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- WPF InkCanvas 画图 基础使用教程
大家好,由于很多原因,我有很长一段时间没有在 CSDN 上分享我的学习成果了,如今终于可以回归分享之路了. 之前在做一个项目的时候,想在一个区域里绘制自己的图形,于是上网搜索资料,无意中找到了 Ink ...
- CentOS下载及版本选择-CentOS LiveCD、LiveDVD和BinDVD区别
1.CentOS系统镜像有两个,安装系统只用到第一个镜像即CentOS-6.x-i386-bin-DVD1.iso(32位)或者CentOS-6.x-x86_64-bin-DVD1.iso(64位), ...
- 基础-Ajax,json
ajax是异步交互,也就是说发送请求,到响应回来,页面只是局部刷新. Ajax 步骤: 获取XMLHttpRequest对象 绑定一个回调函数 open send 在回调函数中完成操作. json是一 ...
- Lucene add、updateDocument添加、更新与search查询(转)
package com.lucene; import java.io.IOException; import org.apache.lucene.analysis.standard.Stand ...
- ios 集合总结
NSArray 用于对象有序集合(相当于是数组) 它有两个限制: 1. 它只能存储objective-c的对象,但不能存储C中的基本数据类型,如int , float, enum, struct等. ...
- Node.js学习 - Event Loop
Node.js本身是单线程,但通过事件和回调支持并发,所以性能非常高. Node.js的每一个API都是异步的,并作为一个独立线程运行,使用异步函数调用,并处理并发. 事件驱动程序 实例 var ev ...
- L10,not for jazz
expressions: It is called a clavichord这被称为古钢琴 a friend of my father's我父亲的朋友 words: musical,adj,音乐的 ...