Prime Test
Time Limit: 6000MS
Memory Limit: 65536K
Total Submissions: 29193
Accepted: 7392
Case Time Limit: 4000MS

Description





Given a big integer number, you are required to find out whether it's a prime number.

Input





The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 2^54).

Output





For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

Sample Input





2

5

10

Sample Output





Prime

2

Source

POJ Monthly

题目大意:T组数据,对于输入的N,若N为素数,输出"Prime",否则输出N的最小素因子

思路:由于N的规模为2^54所以普通的素性推断果断过不了。

要用Miller Rabin素数測试来做。

而若N不为素数。则须要对N进行素因子分解。由于N为大数,考虑用Pollar Rho整数分解来做。

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>
#define MAX_VAL (pow(2.0,60))
//miller_rabbin素性測试
//__int64 mod_mul(__int64 x,__int64 y,__int64 mo)
//{
// __int64 t;
// x %= mo;
// for(t = 0; y; x = (x<<1)%mo,y>>=1)
// if(y & 1)
// t = (t+x) %mo;
//
// return t;
//} __int64 mod_mul(__int64 x,__int64 y,__int64 mo)
{
__int64 t,T,a,b,c,d,e,f,g,h,v,ans;
T = (__int64)(sqrt(double(mo)+0.5));
t = T*T - mo;
a = x / T;
b = x % T;
c = y / T;
d = y % T;
e = a*c / T;
f = a*c % T;
v = ((a*d+b*c)%mo + e*t) % mo;
g = v / T;
h = v % T;
ans = (((f+g)*t%mo + b*d)% mo + h*T)%mo;
while(ans < 0)
ans += mo;
return ans;
}
__int64 mod_exp(__int64 num,__int64 t,__int64 mo)
{
__int64 ret = 1, temp = num % mo;
for(; t; t >>=1,temp=mod_mul(temp,temp,mo))
if(t & 1)
ret = mod_mul(ret,temp,mo); return ret;
} bool miller_rabbin(__int64 n)
{
if(n == 2)
return true;
if(n < 2 || !(n&1))
return false;
int t = 0;
__int64 a,x,y,u = n-1;
while((u & 1) == 0)
{
t++;
u >>= 1;
}
for(int i = 0; i < 50; i++)
{
a = rand() % (n-1)+1;
x = mod_exp(a,u,n);
for(int j = 0; j < t; j++)
{
y = mod_mul(x,x,n);
if(y == 1 && x != 1 && x != n-1)
return false;
x = y;
}
if(x != 1)
return false;
}
return true;
}
//PollarRho大整数因子分解
__int64 minFactor;
__int64 gcd(__int64 a,__int64 b)
{
if(b == 0)
return a;
return gcd(b, a % b);
} __int64 PollarRho(__int64 n, int c)
{
int i = 1;
srand(time(NULL));
__int64 x = rand() % n;
__int64 y = x;
int k = 2;
while(true)
{
i++;
x = (mod_exp(x,2,n) + c) % n;
__int64 d = gcd(y-x,n);
if(1 < d && d < n)
return d;
if(y == x)
return n;
if(i == k)
{
y = x;
k *= 2;
}
}
} void getSmallest(__int64 n, int c)
{
if(n == 1)
return;
if(miller_rabbin(n))
{
if(n < minFactor)
minFactor = n;
return;
}
__int64 val = n;
while(val == n)
val = PollarRho(n,c--);
getSmallest(val,c);
getSmallest(n/val,c);
}
int main()
{
int T;
__int64 n;
scanf("%d",&T);
while(T--)
{
scanf("%I64d",&n);
minFactor = MAX_VAL;
if(miller_rabbin(n))
printf("Prime\n");
else
{
getSmallest(n,200);
printf("%I64d\n",minFactor);
}
}
return 0;
}

POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】的更多相关文章

  1. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  2. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  4. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  5. Miller-Rabbin 素性测试 和 Pollard_rho整数分解

    今天学习一下Miller-Rabbin  素性测试 和 Pollard_rho整数分解. 两者都是概率算法. Miller_Rabbin素性测试是对简单伪素数pseudoprime测试的改进. (ps ...

  6. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  7. HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解

    链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...

  8. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  9. Miller Rabbin素数测试

    步骤 ①先写快速幂取模函数 ②MR算法开始 (1)传入两个参数一个是底数一个是n也就是幂数,如果n是一个合数那么可以判定,这个数一定不是素数 (2)然后开始寻找一个奇数的n去计算,如果最后满足a^d% ...

随机推荐

  1. 如何设置lmt的空间警告阀值

    Example—设置Locally Managed Tablespace的空间警告阀值 The following example sets the free-space-remaining thre ...

  2. 原型链(__proto__)

    前面详细的解释了new的几个步骤,其中随意带过了一下原型链的概念,如果细读那篇文章,基本对原型也能有所理解. 原型有两个关键属性,一个是 __proto__ 一个是 prototype ,了解了这两个 ...

  3. URL加随机数的作用

    原文:URL加随机数的作用 大家在系统开发中都可能会在js中用到ajax或者dwr,因为IE的缓存,使得我们在填入相同的值的时候总是使用IE缓存,为了解决这个问题一般可以用一下方法:        1 ...

  4. Spring4 MVC 多文件上传(图片并展示)

    开始需要在pom.xml加入几个jar,分别是 <dependency> <groupId>commons-fileupload</groupId> <art ...

  5. JAVA的extends使用方法

    理解继承是理解面向对象程序设计的关键.在Java中,通过keywordextends继承一个已有的类,被继承的类称为父类(超类,基类),新的类称为子类(派生类).在Java中不同意多继承. (1)继承 ...

  6. 怎样获取自己的SSL证书

    2.创建证书,注意这里的common name应该填你的server name $ openssl req -new -key key.pem -out request.pem Country Nam ...

  7. android中设置TextView/Button 走马灯效果

    在Android的ApiDemo中,有Button的走马灯效果,但是换作是TextView,还是有一点差异. 定义走马灯(Marquee),主要在Project/res/layout/main.xml ...

  8. IE与FF脚本兼容性问题

    (1) window.event: 表示当前的事件对象,IE有这个对象,FF没有,FF通过给事件处理函数传递事件对象 (2) 获取事件源 IE用srcElement获取事件源,而FF用target获取 ...

  9. JAVA - 优雅的记录日志(log4j实战篇) (转)

    写在前面 项目开发中,记录错误日志有以下好处: 方便调试 便于发现系统运行过程中的错误 存储业务数据,便于后期分析 在java中,记录日志有很多种方式: 自己实现 自己写类,将日志数据,以io操作方式 ...

  10. UVA 620 Cellular Structure (dp)

     Cellular Structure  A chain of connected cells of two types A and B composes a cellular structure o ...