[ACM] hdu 4418 Time travel (高斯消元求期望)
Time travel

Agent K is one of the greatest agents in a secret organization called Men in Black. Once he needs to finish a mission by traveling through time with the Time machine. The Time machine can take agent K to some point (0 to n-1) on the timeline and when he gets
to the end of the time line he will come back (For example, there are 4 time points, agent K will go in this way 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, ...). But when agent K gets into the Time machine he finds it has broken, which make the Time machine can't
stop (Damn it!). Fortunately, the time machine may get recovery and stop for a few minutes when agent K arrives at a time point, if the time point he just arrive is his destination, he'll go and finish his mission, or the Time machine will break again. The
Time machine has probability Pk% to recover after passing k time points and k can be no more than M. We guarantee the sum of Pk is 100 (Sum(Pk) (1 <= k <= M)==100). Now we know agent K will appear at the point X(D is the direction of the Time machine: 0 represents
going from the start of the timeline to the end, on the contrary 1 represents going from the end. If x is the start or the end point of the time line D will be -1. Agent K want to know the expectation of the amount of the time point he need to pass before
he arrive at the point Y to finish his mission.
If finishing his mission is impossible output "Impossible !" (no quotes )instead.
If finishing his mission is impossible output one line "Impossible !"
(no quotes )instead.
2
4 2 0 1 0
50 50
4 1 0 2 1
100
8.14
2.00
解题思路:
转自:http://972169909-qq-com.iteye.com/blog/1689107
题意:一个人在数轴上来回走。以pi的概率走i步i∈[1, m]。给定n(数轴长度)。m。e(终点),s(起点),d(方向)。求从s走到e经过的点数期望
解析:设E[x]是人从x走到e经过点数的期望值,显然对于终点有:E[e] = 0
一般的:E[x] = sum((E[x+i]+i) * p[i])(i∈[1, m])
(走i步经过i个点,所以是E[x+i]+i)
建立模型:高斯消元每一个变量都是一个互不同样的独立的状态,因为人站在一个点,另一个状态是方向!比如人站在x点。有两种状态向前、向后,不能都当成一种状态建立方程,所以要把两个方向化为一个方向从而使状态不受方向的影响
实现:
n个点翻过去(除了头尾两个点~~~)变为2*(n-1)个点,比如:
6个点:012345 ---> 0123454321
那么显然,从5開始向右走事实上就是相当于往回走
然后方向就由两个状态转化成一个状态的,然后每一个点就是仅仅有一种状态了,对每一个点建立方程高斯消元就可以
状态转移有E[x]=sum((E[x+i]+i)*p[i])
即 E[x]=sum(E[x+i]*p[i]) + sum(i*p[i])
即E[x]-E[x+1]*p[1]-E[x+2]*p[2]-.........-E[x+m]*p[m]=sum(i*p[i])
代码:
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <iomanip>
#include <queue>
#include <cmath>
using namespace std;
const double eps=1e-9;
double p[110];
bool vis[220];
int n,m,x,y,d;
double a[220][220];
int equ,var;//equ个方程,var个变量
double xi[220];//解集
bool free_x[220]; int sgn(double x)
{
return (x>eps)-(x<-eps);
} bool bfs()
{
memset(vis,0,sizeof(vis));
vis[x]=true;
queue<int>q;
q.push(x);
while(!q.empty())
{
int first=q.front();
q.pop();
for(int i=1;i<=m;i++)
{
int temp=(first+i)%n;
if(p[i]>=eps&&!vis[temp])
{
vis[temp]=true;
q.push(temp);
}
} }
if(vis[y]||vis[(n-y)%n])
return true;
return false;
} void create()
{
double sum=0;
for(int i=1;i<=m;i++)
sum+=p[i]*i;
memset(a,0,sizeof(a));
for(int i=0;i<n;i++)
{
a[i][i]=1;
if(!vis[i])
continue;
if(i==y||i==(n-y)%n)
{
a[i][n]=0;
continue;
}
a[i][n]=sum;
for(int j=1;j<=m;++j)
{
a[i][(i+j)%n]-=p[j];//一定不能写成a[i][(i+j)%n]=-p[j];//由于同一个点可能到达两次或多次。系数要叠加,切记! !!
}
}
} int gauss()
{
equ=n,var=n;
int i,j,k;
int max_r; // 当前这列绝对值最大的行.
int col; // 当前处理的列.
double temp;
int free_x_num;
int free_index;
// 转换为阶梯阵.
col=0; // 当前处理的列.
memset(free_x,true,sizeof(free_x));
for(k=0;k<equ&&col<var;k++,col++)
{
max_r=k;
for(i=k+1;i<equ;i++)
{
if(sgn(fabs(a[i][col])-fabs(a[max_r][col]))>0)
max_r=i;
}
if(max_r!=k)
{ // 与第k行交换.
for(j=k;j<var+1;j++)
swap(a[k][j],a[max_r][j]);
}
if(sgn(a[k][col])==0)
{ // 说明该col列第k行下面全是0了,则处理当前行的下一列.
k--; continue;
}
for(i=k+1;i<equ;i++)
{ // 枚举要删去的行.
if (sgn(a[i][col])!=0)
{
temp=a[i][col]/a[k][col];
for(j=col;j<var+1;j++)
{
a[i][j]=a[i][j]-a[k][j]*temp;
}
}
}
} for(i=k;i<equ;i++)
{
if (sgn(a[i][col])!=0)
return 0;
}
if(k<var)
{
for(i=k-1;i>=0;i--)
{
free_x_num=0;
for(j=0;j<var;j++)
{
if (sgn(a[i][j])!=0&&free_x[j])
free_x_num++,free_index=j;
}
if(free_x_num>1) continue;
temp=a[i][var];
for(j=0;j<var;j++)
{
if(sgn(a[i][j])!=0&&j!=free_index)
temp-=a[i][j]*xi[j];
}
xi[free_index]=temp/a[i][free_index];
free_x[free_index]=0;
}
return var-k;
} for (i=var-1;i>=0;i--)
{
temp=a[i][var];
for(j=i+1;j<var;j++)
{
if(sgn(a[i][j])!=0)
temp-=a[i][j]*xi[j];
}
xi[i]=temp/a[i][i];
}
return 1;
} int main()
{
int t;cin>>t;
while(t--)
{
cin>>n>>m>>y>>x>>d;
double temp;
for(int i=1;i<=m;i++)
{
cin>>temp;
p[i]=temp/100;
}
if(x==y)
{
cout<<"0.00"<<endl;
continue;
}
n=(n-1)*2;
if(d>0)
x=(n-x)%n;
if(!bfs())
{
cout<<"Impossible !"<<endl;
continue;
}
create();
if(!gauss())
cout<<"Impossible !"<<endl;
else
cout<<setiosflags(ios::fixed)<<setprecision(2)<<xi[x]<<endl;
}
return 0;
}
[ACM] hdu 4418 Time travel (高斯消元求期望)的更多相关文章
- hdu 4870 rating(高斯消元求期望)
Rating Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- HDU4870_Rating_双号从零单排_高斯消元求期望
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...
- hdu 4418 高斯消元求期望
Time travel Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- hdu 3992 AC自动机上的高斯消元求期望
Crazy Typewriter Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 2262 高斯消元求期望
Where is the canteen Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- HDU 5833 (2016大学生网络预选赛) Zhu and 772002(高斯消元求齐次方程的秩)
网络预选赛的题目……比赛的时候没有做上,确实是没啥思路,只知道肯定是整数分解,然后乘起来素数的幂肯定是偶数,然后就不知道该怎么办了… 最后题目要求输出方案数,首先根据题目应该能写出如下齐次方程(从别人 ...
- 高斯消元与期望DP
高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在 ...
- 【BZOJ2137】submultiple 高斯消元求伯努利数
[BZOJ2137]submultiple Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由 ...
- SPOJ HIGH(生成树计数,高斯消元求行列式)
HIGH - Highways no tags In some countries building highways takes a lot of time... Maybe that's bec ...
随机推荐
- 【linux】内核编译
原创,转载时请注明,谢谢.邮箱:tangzhongp@163.com 博客园地址:http://www.cnblogs.com/embedded-tzp Csdn博客地址:http://blog.cs ...
- C++基础学习笔记----第四课(函数的重载、C和C++的相互调用)
本节主要讲了函数重载的主要概念以及使用方法,还有C和C++的相互调用的准则和具体的工程中的使用技巧. 函数重载 1.基本概念 函数重载就是用同一个函数名来定义不同的函数.使用不同的函数参数来搭配同一个 ...
- wxpython 32 位 ,python 64 位问题
在安装Python Wxpython模块后,导入包的时候,会提示不支持64位的支持,需要安装Pythons 32 位,或者强制,使用Python 32 模式运行即可 在终端输入: defaults w ...
- VS2008通过 map 和 cod 文件定位崩溃代码行
VS 2005/2008使用map文件查找程序崩溃原因 一般程序崩溃可以通过debug,找到程序在那一行代码崩溃了,最近编一个多线程的程序,都不知道在那发生错误,多线程并发,又不好单行调试,终于找到一 ...
- python 获取当前日期 星期
from datetime import datetime d =datetime.today() #获取当前日期时间 d.isoweekday() #获取时间周几
- android ListView和GridView拖拽移位实现代码
关于ListView拖拽移动位置,想必大家并不陌生,比较不错的软件都用到如此功能了.如:搜狐,网易,百度等,但是相比来说还是百度的用户体验较好,不偏心了,下面看几个示例: 首先 ...
- deflate——过时的网页压缩格式,最好禁用[转]
在设置GZip时,发现同时有个Deflate压缩设置,一开始并不了解Deflate压缩,于是便在启用GZip的同时,也启用了Deflate压缩.虽然同时设置GZip和Deflate压缩,并不影响网站的 ...
- quarze的工作原理
quartz的工作原理 http://lavasoft.blog.51cto.com/62575/181907/ 几种定时任务的比較 http://blog.sina.com.cn/s/blog_69 ...
- reduce个数究竟和哪些因素有关
reduce的数目究竟和哪些因素有关 1.我们知道map的数量和文件数.文件大小.块大小.以及split大小有关,而reduce的数量跟哪些因素有关呢? 设置mapred.tasktracker.r ...
- HTML——使用表格对表单进行布局
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc3Vuc2h1bWlu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...