loj1341(数学)
传送门:Aladdin and the Flying Carpet
题意: 给出两个正整数1<=m<=n<=1e12。问N可以拆成多少对p*q,使得p和q中最小的不小于a,且p!=q。
分析:先log(n)求出n的总因子个数,然后再排除因子小于m的个数,若m*m>n答案必定为0,否则可以暴力1~m排除因子小于m的个数,这里稍微优化一下dfs排除小于m的因子个数。
#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 1000000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
inline LL read()
{
char ch=getchar();LL x=,f=;
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int prime[N/],tot;
bool vis[N+];
int ans;
LL n,m;
void init()
{
memset(vis,false,sizeof(vis));
for(int i=;i<=N;i++)
{
if(!vis[i])
{
prime[tot++]=i;
}
for(int j=;j<tot&&i*prime[j]<=N;j++)
{
vis[i*prime[j]]=true;
if(i%prime[j]==)break;
}
}
}
void dfs(int dep,LL x)
{
ans--;
for(int i=dep;i<tot;i++)
{
if(x*prime[i]<m)
{
if(n%(x*prime[i])==)
dfs(i,x*prime[i]);
}
else return;
}
}
int main()
{
int T,cas=;
init();
T=read();
while(T--)
{
n=read();m=read();LL temp=n;
printf("Case %d: ",cas++);
if(m*m>=n)
{
puts("");continue;
}
ans=;
for(int i=;i<tot&&(LL)prime[i]*prime[i]<=temp;i++)
{
if(temp%prime[i]==)
{
int x=;
while(temp%prime[i]==)
{
x++;temp/=prime[i];
}
ans*=(x+);
}
}
if(temp>)
{
ans*=;
}
ans/=;
if(m>)dfs(,);
printf("%d\n",ans);
}
}
loj1341(数学)的更多相关文章
- 数学思想:为何我们把 x²读作x平方
要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...
- 速算1/Sqrt(x)背后的数学原理
概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...
- MarkDown+LaTex 数学内容编辑样例收集
$\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...
- 深度学习笔记——PCA原理与数学推倒详解
PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...
- Sql Server函数全解<二>数学函数
阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...
- *HDU 2451 数学
Simple Addition Expression Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- 如何解决Maple的应用在数学中
对任意数学和技术学科的研究员.教师和学生而言,Maple是一个必备的工具.通过Maple,教师将复杂数学问题注入生命,学生的精力集中在概念理解上而不是如何使用工具上,研究员可以开发更复杂的算法或模型. ...
- 如何让Maple中的数学引擎进入你的桌面应用程序和网站
MapleNET数学服务套件将Maple 2015强大的数学引擎引入您的应用程序和网站.使用MapleNET,您可以添加数学计算和可视化功能到网页和桌面程序中,通过互联网/局域网分享“活”的Maple ...
- 【原创】开源Math.NET基础数学类库使用(07)常用的数学物理常数
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 1.前 ...
随机推荐
- 基于visual Studio2013解决C语言竞赛题之1015日期计算
题目 解决代码及点评 /* 15. 已知某年不是闰年,给定该年某一天的月份和日期, 求这一天是该年的第几天. */ #include <stdio.h> #incl ...
- SwifThumb.com 第一家Swift开发人员论坛 QQ群 343549891
官方QQ群2: 兴许会有app出来让大家随时地学习Swift并在线交流~ watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvQW5ld2N6cw==/font ...
- 3DShader之立方体环境映射(cubic environment mapping)
前面讲了球形环境映射,然而目前采用更多的是立方体环境映射.国际惯例:上图先: 1.反射: 2.折射 3.fresnel(反射+折射) 4.色散 好了,大概讲下原理, 立方体纹理我就不多讲了,它以一个3 ...
- android文件下载大小和网络不一致(偏大)
今天在写一个文件下载的程序,在网上搜索了一个抄,用来下载MP3文件. 但是发现下载的MP3文件比原来的文件要大,而且MP3中会有杂音. 在Log中加入日志后发现: 从 网络流中获取的流长度为3000 ...
- DM6446开发攻略——u-boot-1.3.4移植(1)
http://zjbintsystem.blog.51cto.com/964211/282387转载 UBOOT的版本更新速度比较快,截止今天,稳定正式的版本是u-boot-2009.11-rc2 ...
- ACM POJ 2192 Zipper
题目大意:输入字符串a,b,c 要求推断c是否有a,b中的个字符保持原有顺序组合而成. 算法思想: DP 用dp[i][j]表示a的前0~i-1共i个字符和b的前0~j-1共j个字符是否构成c[i+j ...
- C++学习之路—继承与派生(一):基本概念与基类成员的访问属性
(本文根据<c++程序设计>(谭浩强)总结而成,整理者:华科小涛@http://www.cnblogs.com/hust-ghtao,转载请注明) 1 基本思想与概念 在传统的程序设计 ...
- FOJ 1607 Greedy division 数学题
题目地址: http://acm.fzu.edu.cn/problem.php?pid=1607 给定一个n,将n平均分成m份,问有几种方法,每种方法中找出最大的数.思路:就是求n的因子数.先将每个数 ...
- Xamarin.forms 自定义dropdownview控件
一 基本说明 想用xamarin做个像美团这样的下拉列表进行条件选择的功能,但是但是找了半天好像没有现成的,也没有其他类似的控件可以走走捷径,再则也没有找到popwindow之类的东东,这里只好使用s ...
- Android菜鸟的成长笔记(4)——你真的理解了吗?
原文:Android菜鸟的成长笔记(4)--你真的理解了吗? 在上一篇中我们查看了QQ的apk源文件中的布局结构,并仿照QQ完成了我们第一个应用的界面,详细请看<Android菜鸟的成长笔记&g ...