Given preorder and inorder traversal of a tree, construct the binary tree.

Note:

You may assume that duplicates do not exist in the tree.

1:注意特殊情况。2:递归的情况;3:递归结束情况;4:首先获得根节点,之后把两个数组分别分成两部分,递归分别得出左子树和右子树。

    TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder)
{
if(preorder.size() == 0 || inorder.size() == 0 || preorder.size() != inorder.size())
{
return NULL;
} int size = (int)preorder.size(); return buildTreeCore(preorder, 0, inorder, 0, size);
} TreeNode* buildTreeCore(vector<int> &preorder, int preStart, vector<int> &inorder, int preIn, int length)
{
if(length == 1)
{
if(preorder[preStart] != inorder[preIn])
{
return NULL;
}
} int rootValue = preorder[preStart];
TreeNode *root = new TreeNode(rootValue); int i = 0; for(; i < length; i++)
{
if(inorder[preIn + i] == rootValue)
{
break;
}
} if(i == length)
{
return NULL;
} if(i > 0)
{
root->left = buildTreeCore(preorder, preStart + 1, inorder, preIn, i);
} if(i < length - 1)
{
root->right = buildTreeCore(preorder, preStart + i + 1, inorder, preIn + i + 1, length - 1 - i);
} return root;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

72_leetcode_Construct Binary Tree from Preorder and Inorder Traversal的更多相关文章

  1. Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...

  2. 36. Construct Binary Tree from Inorder and Postorder Traversal && Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal OJ: https://oj.leetcode.com/problems/cons ...

  3. LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...

  4. 【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode 原题链接 Construct Binary Tree from Inorder and Postorder Traversal - LeetCode Construct Binary ...

  5. LeetCode: Construct Binary Tree from Preorder and Inorder Traversal 解题报告

    Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...

  6. 【LeetCode】105. Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...

  7. LeetCode_Construct Binary Tree from Preorder and Inorder Traversal

    一.题目 Construct Binary Tree from Preorder and Inorder Traversal My Submissions Given preorder and ino ...

  8. [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  9. [LeetCode] 105. Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

随机推荐

  1. 使用git微命令深入理解git工作机制

    首先.这篇不是真正意义上的翻译,所以大家在看的时候不要找相应的英文文章相应着看.这篇文章之所以归类为翻译.是由于最開始有一篇英文文章让我对git内部机制有了清楚的认识,它能够说是我git的启蒙老师吧. ...

  2. UPX 加壳工具:The Ultimate Packer for eXecutables

    UPX (the Ultimate Packer for eXecutables)是一款先进的可运行程序文件压缩器.压缩过的可运行文件体积缩小50%-70% ,这样降低了磁盘占用空间.网络上传下载的时 ...

  3. spring-framework-3.2.4.RELEASE 综合hibernate-release-4.3.5.Final一个错误Caused by: java.lang.NoClassDefFound

    LZ一体化的今天spring-framework-3.2.4.RELEASE 综合hibernate-release-4.3.5.Final一个错误Caused by: java.lang.NoCla ...

  4. Lu核心库系统结构及输出函数

    Lu核心库系统结构及输出函数 Lu来源于Forcal,可以说,没有Forcal就没有Lu,但学习Lu并不需要了解Forcal. Lu是对Forcal的完善和发展,但与Forcal相比,Lu更简洁实用. ...

  5. android一个上传图片的样例,包含怎样终止上传过程,假设在上传的时候更新进度条(一)

    先上效果图: Layout为: <? xml version="1.0" encoding="utf-8"?> <LinearLayout x ...

  6. RGB转为Lab空间

    虽然若干年前就看过了关于色彩空间的介绍,但是直到今天才自己动手写代码做这件事情.虽然网络上已经有很多现成的例子,但是一则仅仅适用于浮点型的数据,另一方面,在实现上也有一些尚可优化之处. 色彩模型除了最 ...

  7. OCA读书笔记(15) - 执行数据库备份

    物理备份 -- 数据文件,控制文件,日志文件,参数文件 数据库备份 冷备 -- 归档和非归档均可以 什么时候必须用冷备?1. 数据库的模式为非归档的2. 用于现场保护 冷备的过程:1. 首先查看备份文 ...

  8. CString的部分实现剖析

    一.CString初探: 在CString的实现中,其最基础的类结构如下: CString其实只有一个数据成员m_pszData,这个成员指向了字符串的首地址.但在MFC的具体实现中, m_pszDa ...

  9. 查看mysql数据库表大小和最后修改时间

    查看mysql数据库表相关信息如表大小.修改更新等信息,可以通过以下方式: 一   show table status like ’table_name‘ ; 二 在infortmation_sche ...

  10. hdu4521(线段树+dp)

    传送门:小明系列问题——小明序列 题意:有n个数,求间距大于d的最长上升序列. 分析:dp[i]表示在i点以a[i]结束距离大于d的最长上升序列,然后每更新到第i点时,取i-d之前小于a[i]的数为结 ...