前言:

通过检索论文、书籍、博客,继续学习Caffe,千里之行始于足下,继续努力。将自己学到的一些东西记录下来,方便日后的整理。

正文:

1、代码结构梳理

在终端下运行如下命令,可以查看caffe代码结构,我将其梳理了一下:

root@ygh:/home/ygh/caffe# tree -d
.
├── build -> .build_release //编译结果存放处,子目录结构与主目录类似
├── cmake //使用CMake编译时会用到
│   ├── External
│   ├── Modules
│   └── Templates
├── data //用于存放原始数据及数据获取的脚本sh文件
│   ├── cifar10
│   ├── ilsvrc12
│   └── mnist
├── distribute //编译后生成发布包的位置,用于迁移
│   ├── bin
│   └── lib
├── docker //同样为了便于迁移,使用了Docker工具
│   ├── cpu
│   └── gpu
├── docs //doxygen工程文件放在这里,可生成Caffe ref_man.pdf
│   ├── images
│   ├── _layouts
│   ├── stylesheets
│   └── tutorial
│   ├── fig
│   └── layers
├── examples //存放Caffe简单例程
│   ├── cifar10 //CIFAR10例程
│   ├── cpp_classification //图像分类例程
│   ├── feature_extraction //特征提取例程
│   ├── finetune_flickr_style //finetune例程
│   ├── finetune_pascal_detection //finetune例程
│   ├── hdf5_classification //使用HDF5数据源的分类例程
│   ├── imagenet //ImageNet例程,使用bvlc_reference_caffenet模型
│   ├── images
│   ├── mnist //MNIST手写数字识别例程
│   │   ├── mnist_test_lmdb
│   │   └── mnist_train_lmdb
│   ├── net_surgery
│   ├── pycaffe
│   │   └── layers
│   ├── siamese
│   └── web_demo //一个Web Server + 分类例程
│   └── templates
├── include //Caffe头文件集中存放此目录
│   └── caffe
│   ├── layers
│   ├── test
│   └── util
├── Install-OpenCV
│   ├── ArchLinux
│   ├── RedHat
│   └── Ubuntu
│   ├── 2.3
│   └── 2.4
├── matlab //适用于Matlab做Wrapper,具体可以参考RCNN源码
│   ├── +caffe
│   │   ├── imagenet
│   │   ├── private
│   │   └── +test
│   ├── demo
│   └── hdf5creation
├── models //存放示例模型
│   ├── bvlc_alexnet //经典的AlexNet
│   ├── bvlc_googlenet //GoogLeNet
│   ├── bvlc_reference_caffenet //Caffe模型的AlexNet
│   ├── bvlc_reference_rcnn_ilsvrc13 //RCNN模型 https:github.com/rbgirshick/rcnn
│   └── finetune_flickr_style
├── python //用于python Wrapper
│   └── caffe
│   ├── imagenet
│   ├── proto
│   └── test
├── scripts //存放脚本
│   └── travis
├── src //Caffe源码
│   ├── caffe
│   │   ├── layers //各个层的具体实现
│   │   ├── proto //proto描述文件,学习数据结构先从这里开始
│   │   ├── solvers
│   │   ├── test
│   │   │   └── test_data
│   │   └── util
│   └── gtest
└── tools //常用工具源码
└── extra

2、相关知识点

训练网络时,需要由数据读取层(DataLayer)不断地从LMDB读取数据,送入后续卷积、下采样等计算层。
数据读取层声明位于 include/caffe/data_layer.hpp中
数据变换器(DataTransformer)主要提供了对原始输入图像的预处理方法,包括随机切块、随机镜像、幅度缩放、去均值、灰度/色度变换等。声明头文件位于 include/Caffe/data_transformer.hpp中

求解器实现:
Caffe中的求解器有以下几种:
1、随机梯度下降法(Stochastic Gradient Descent,SGD),最常用
2、AdaDelta
3、自适应梯度法(Adaptive Gradient,ADAGRAD)
4、Adam
5、Nesterov加速梯度法(Nesterov's Accelerated Gradient,NAG)
6、RMSprop

solver.prototxt中格式
base_lr:0.01          //基准学习速率为0.01,另外每个Layer会在基准上进行细调
lr_policy:"step"      //学习速率衰减策略,step为步进方式,即每进行step次迭代,学习速率更新一次
gamma:0.1            //学习速率衰减常数,每次更新学习速率都是乘上这个固定常数
stepsize:100000      //每10万次迭代,对学习速率进行一次更新
max_iter:350000    //训练总共需要35万次迭代
momentum:0.9      //遗忘因子为0.9

Caffe学习系列(二)Caffe代码结构梳理,及相关知识点归纳的更多相关文章

  1. RabbitMQ学习系列二-C#代码发送消息

    RabbitMQ学习系列二:.net 环境下 C#代码使用 RabbitMQ 消息队列 http://www.80iter.com/blog/1437455520862503 上一篇已经讲了Rabbi ...

  2. 图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二)

    项目链接:https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1 欢迎fork欢迎三连!文章篇幅有限, ...

  3. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

  4. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  5. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  6. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  7. Caffe学习系列(12):训练和测试自己的图片--linux平台

    Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...

  8. Caffe学习系列(22):caffe图形化操作工具digits运行实例

    上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...

  9. Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

    经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...

随机推荐

  1. Web浏览器兼容性测试工具如何选择

    对于前端开发工程师来说,网页兼容性测试工程师而言,确保代码在各种主流浏览器的各个版本中都能正常工作是件很费时的事情,幸运的是,有很多优秀的工具可以帮助测试浏览器的兼容性,领测软件测试网向您推荐12款很 ...

  2. [心得]传统IT转互联网面试经验分享

    http://www.newsmth.net/bbstcon.php?board=Java&gid=374779 传统IT外企干了8年,两年前转互联网的,面的和被面的都不少.这几天项目空档期, ...

  3. HTTP协议系列(3)---包括WebSocket简单介绍

    一.HTTPS     HTTP是超文本传输协议,那HTTPS是什么尼?要明白HTTPS是什么先要明白HTTP的缺点,想一下我们在使用HTTP的时候会有那些缺点尼? 1.通信使用的明文(不加密),内容 ...

  4. 部署JForum 2.1.9遇到的问题及解决方法

    1. 主要问题是出在连接数据库和创建表阶段,当我们配置好MySQL的各种参数后,创建表的时候会报错: 原因:主要是由于建表的SQL语句和MySQL的版本不一致导致的. 解决办法:简单来说,在MYSQL ...

  5. Bootstrap入门(三十)JS插件7:警告框

    Bootstrap入门(三十)JS插件7:警告框 通过这个插件可以为警告信息添加点击以及消失的功能. 当使用一个.close按钮,它必须是第一个子元素.alert-dismissible,并没有文字内 ...

  6. quartz配置时间

    我们需要把log4j的配置文件放入src目录下,启动main类就可以了. Cron Expressions cron的表达式被用来配置CronTrigger实例. cron的表达式是字符串,实际上是由 ...

  7. PHP 数组处理

    一:PHP 定义数组: PHP 代码  不能再 空的位置 打字  会报错 定义数组  方式1 $cars=array("Volvo","BMW","T ...

  8. ios 动画学习的套路 (二)

    有它们俩你就够了! 说明:下面有些概念我说的不怎么详细,网上实在是太多了,说了我觉得也意义不大了!但链接都给大家了,可以自己去看,重点梳理学习写动画的一个过程和一些好的博客! (一) 说说这两个三方库 ...

  9. IIS7.0发布后关于"不能在此路径中使用此配置节”的解决办法

    在系统为window sever2008,iis7.0上安装后发布出现 IIS Web Core 通知 BeginRequest 处理程序 尚未确定 错误代码 0x80070021 配置错误 不能在此 ...

  10. Angular2 + Webpack项目搭建Demo

    本文将从头开始编写实际的代码来完成一个angular2的demo. 题外话是其实angular2官网的快速开始项目已经很酷炫了,但其侧重快速二字,只够拿来练习玩耍,倒是github上确实已经有了一些不 ...