BestCoder Round #85 A B C
本来没有写博客的打算,可是看完了题解感觉这三道题这么水,我却只做出来一道,实在不应该,还是写点东西吧……
A.sum
给定一个数列,求是否存在连续子列和为m的倍数,存在输出YES,否则输出NO
输入文件的第一行有一个正整数T(1≤T≤101\leq T \leq 101≤T≤10),表示数据组数。 接下去有T组数据,每组数据的第一行有两个正整数n,m (1≤n≤100000 1\leq n\leq 1000001≤n≤100000 ,1≤m≤5000 1\leq m\leq5000 1≤m≤5000). 第二行有n个正整数x (1≤x≤1001\leq x\leq 1001≤x≤100)表示这个数列。
输出T行,每行一个YES或NO。
2
3 3
1 2 3
5 7
6 6 6 6 6
YES
NO 分析:
就做出来这一道题-_-||
思路很清晰 输入一个数加一个数进sum 然后取模 如果有两个sum%m相等 那么这两个数之间的序列和%m一定==0 当然 如果有序列和%m==0就不用算差了……
#include<stdio.h>
#include<string.h>
#define M(a,b) memset(a,b,sizeof(a))
int num[];
int sum[];
int main(){
int T;
scanf("%d",&T);
while(T--){
int n,m;
scanf("%d%d",&n,&m);
M(num,);
int a;
for(int i=;i<n;i++){
scanf("%d",&a);
sum[i]=(sum[i-]+a)%m;
num[sum[i]]++;
}
if(n>=m||num[]!=){ //n>=m是题解抽屉原理的优化
puts("YES");
continue;
}
bool ok=;
for(int i=;i<m;i++)
if(num[i]>) ok=;
printf("%s\n",ok?"YES":"NO");
}
return ;
}
B.domino
小白在玩一个游戏。桌子上有n张多米诺骨牌排成一列。它有k次机会,每次可以选一个还没有倒的骨牌,向左或者向右推倒。每个骨
牌倒下的时候,若碰到了未倒下的骨牌,可以把它推倒。小白现在可以随意设置骨牌的高度,但是骨牌高度为整数,且至少为1,并且
小白希望在能够推倒所有骨牌的前提下,使所有骨牌高度的和最小。
第一行输入一个整数T(1≤T≤101\leq T \leq 101≤T≤10)
每组数据有两行
第一行有两个整数n和k,分别表示骨牌张数和机会次数。(2≤k,n≤1000002\leq k,n\leq 1000002≤k,n≤100000)
第二行有n-1个整数,分别表示相邻骨牌的距离d,1≤d≤1000001\leq d \leq 1000001≤d≤100000
对于每组数据,输出一行,最小的高度和
1
4 2
2 3 4
9
分析:
一开始把这道题想复杂了 打了好长好长的代码 看了题解感觉真是想多了……
其实就是先把牌的高度存下来 然后贪心 即排序后只取前n-k个值
因为每张牌至少高度是1 所以初始化ans=n 就相当于每张牌一开始都是1 只要往上加间距就好了
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#define M(a,b) memset(a,b,sizeof(a))
using namespace std;
int card[];
int main(){
int T;
scanf("%d",&T);
while(T--){
int n,k;
M(card,);
scanf("%d%d",&n,&k);
for(int i=;i<n-;i++)
scanf("%d",&card[i]);
if(k>=n){
printf("%d\n",n);
continue;
}
sort(card,card+n);
long long ans=n;
for(int i=;i<=n-k;i++)
ans+=card[i];
printf("%I64d\n",ans);
}
return ;
}
c.abs
给定一个数x,求正整数y≥2y\geq 2y≥2,使得满足以下条件:
1.y-x的绝对值最小
2.y的质因数分解式中每个质因数均恰好出现2次。
第一行输入一个整数T(1≤T≤501\leq T\leq 501≤T≤50)
每组数据有一行,一个整数x(1≤x≤10181\leq x\leq {10}^{18}1≤x≤1018)
对于每组数据,输出一行y-x的最小绝对值
5
1112
4290
8716
9957
9095
23
65
67
244
70 分析:
这道题的数据范围是最唬人的了 1e18 解法却是暴力……
因为素数定理(我也是百度才知道)可以将时间复杂度降到允许暴力的范围内……
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#define M(a,b) memset(a,b,sizeof(a))
using namespace std;
long long ans,y;
bool solve(long long a){
long long aa=a;
if(a<) return false;
for(long long i=;i*i<=aa;i++){
if(aa%i==){
if(aa%(i*i)==) //i出现不止一次
return false;
aa/=i;
}
}
ans=min(ans,abs(y-a*a)); //判断solve(x+i)和solve(x-i)一大一小
return true;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%I64d",&y);
long long x=(long long)(sqrt(y)+0.5);//这0.5的精度也会WA
long long i=;
ans=;
bool ok=false;
if(solve(x)){
printf("%I64d\n",abs(y-x*x));
continue;
}
while(true&&!ok){
if(solve(x+i)) ok=true;
if(solve(x-i)) ok=true;
i++;
}
printf("%I64d\n",ans);
}
return ;
}
BestCoder Round #85 A B C的更多相关文章
- BestCoder Round #85(ZOJ1569尚未验证)
A题 子序列和啊,就要想到前缀和的差.这个转换一定要!记着!那么i到j的一段子序列和Sij%m == 0就等价于(Sj-Si-1)%m == 0 了,那么什么意思呢?就是如果有两段前缀和%m的模是一 ...
- BestCoder Round #85 hdu5778 abs(素数筛+暴力)
abs 题意: 问题描述 给定一个数x,求正整数y,使得满足以下条件: 1.y-x的绝对值最小 2.y的质因数分解式中每个质因数均恰好出现2次. 输入描述 第一行输入一个整数T 每组数据有一行,一个整 ...
- BestCoder Round #85 hdu5777 domino
domino 题意: 问题描述 小白在玩一个游戏.桌子上有n张多米诺骨牌排成一列.它有k次机会,每次可以选一个还没有倒的骨牌,向左或者向右推倒.每个骨 牌倒下的时候,若碰到了未倒下的骨牌,可以把它推倒 ...
- BestCoder Round #85 hdu5776 sum
sum 题意: 问题描述 给定一个数列,求是否存在连续子列和为m的倍数,存在输出YES,否则输出NO 输入描述 输入文件的第一行有一个正整数T,表示数据组数. 接下去有T组数据,每组数据的第一行有两个 ...
- HDU5780 gcd (BestCoder Round #85 E) 欧拉函数预处理——分块优化
分析(官方题解): 一点感想: 首先上面那个等式成立,然后就是求枚举gcd算贡献就好了,枚举gcd当时赛场上写了一发O(nlogn)的反演,写完过了样例,想交发现结束了 吐槽自己手速慢,但是发了题解后 ...
- HDU5779 Tower Defence (BestCoder Round #85 D) 计数dp
分析(官方题解): 一点感想:(这个题是看题解并不是特别会转移,当然写完之后看起来题解说得很清晰,主要是人太弱 这个题是参考faebdc神的代码写的,说句题外话,很荣幸高中和faebdc巨一个省,虽然 ...
- HDU 5778 abs (BestCoder Round #85 C)素数筛+暴力
分析:y是一个无平方因子数的平方,所以可以从sqrt(x)向上向下枚举找到第一个无平方因子比较大小 大家可能觉得这样找过去暴力,但实际上无平方因子的分布式非常密集的,相关题目,可以参考 CDOJ:无平 ...
- HDU5777 domino (BestCoder Round #85 B) 思路题+排序
分析:最终的结果肯定会分成若干个区间独立,这些若干个区间肯定是独立的(而且肯定是一边倒,左右都一样) 这样想的话,就是如何把这n-1个值分成 k份,使得和最小,那么就是简单的排序,去掉前k大的(注意l ...
- HDU 5776 sum (BestCoder Round #85 A) 简单前缀判断+水题
分析:就是判断简单的前缀有没有相同,注意下自身是m的倍数,以及vis[0]=true; #include <cstdio> #include <cstdlib> #includ ...
- BestCoder Round #85
sum Accepts: 640 Submissions: 1744 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/13107 ...
随机推荐
- quagga源码分析--通用库thread
quagga是开源路由器软件,提供的用户界面与思科,华为的路由器的人机接口几乎一致,非常有学习价值,尤其是开源的协议代码,简直亮瞎了我的小眼睛. quagga的介绍,我就不赘述了,有兴趣的可以找度娘或 ...
- strut2配置文件属性介绍
mystruts.xml配置文件属性介绍 1.package标签的中的namespace属性 <package name="default" extends="st ...
- eclipse安装插件的4种方式
Eclipse插件的安装方法大体有以下三种:[9] 第一种:直接复制法 假设Eclipse的安装目录在C:\eclipse,解压下载的eclipse 插件或者安装eclipse 插件到指定目录AA(如 ...
- cocos2d-x中的init,onEnter,onExit......
CCNode的init()方法和onEnter()方法: 一.调用顺序显示FirstScene时: FirstLayer::initFirstLayer::onEnterFirstLayer::onE ...
- Java获取IP
public static String getIpAddr(HttpServletRequest request) { String ip = request.getHeader(&q ...
- BFS,DFS伪代码
//bfs #define queue_init (head=tail=0) #define queue_is_empty (head==tail) #define en_queue(x) (queu ...
- 关于git提交、还原使用
1.本地修改,未提交到本地仓库,想要恢复到修改前 右键这个文件-team-show local hostory -找到某一版本-右键-get Contents 即可恢复到某一版本 2. 命令:git ...
- A标签-一个按钮样式
该文件引用jquery-1.11.3.js库 <!doctype html> <html> <head> <meta charset="UTF-8& ...
- xrange()与range()
range(start,stop,step) range(0,8) >>print range(0,8) [0,1,2,3,4,5,6,7] range()返回一个数字列表. start ...
- Java Day03 面向对象程序设计
1.面向对象 面向对象是指一种程序设计泛型,同时也是一种程序开发的方法. 2.类 类是一种抽象的概念,类中包含了数据与对数据的操纵. 具有相同特性(数据元素)和行为(功能)的对象的抽象就是类.类是对象 ...