Description

定义"组合数"S(n,m)代表将n 个不同的元素拆分成m 个非空集合的方案数.

举个例子,将{1,2,3}拆分成2 个集合有({1},{2,3}),({2},{1,3}),({3},{1,2})三种拆分方法.

小猫想知道,如果给定n,m 和k,对于所有的0<=i<=n,0<=j<=min(i,m),有多少对(i,j),满足S(i,j)是k 的倍数.

注意,0 也是k 的倍数,S(0,0)=1,对于i>=1,S(i,0)=0.

Input

第一行有两个整数t,k,t 代表该测试点总共有多少组测试数据.接下来t 行,每行两个整数n,m.

Output

t 行,每行一个整数代表所有的0<=i<=n,0<=j<=min(i,m),有多少对(i,j),满足S(i,j)是k 的倍数.

Sample Input

输入1:

1 2

3 3

输入2:

2 5

4 5

6 7

Sample Output

输出1:

3

样例说明1:S(1,0),S(2,0),S(3,0)均是2 的倍数

输出2:

4

12

Hint

Data Constraint

对于20%的数据,满足n,m<=7,k<=5

对于60%的数据,满足n,m<=100,k<=10

对于每个子任务,都有50%的数据满足t=1

对于100%的数据,满足1<=n<=2000,1<=m<=2000,2<=k<=21,1<=t<=10000

666实力模仿NOIP,,,我那个时候不会杨辉三角QwQ

因为集合是无序的,所以可以推出S的转移方程:

\(S[i][j]=S[i-1][j]*j+S[i-1][j-1]\)

也就是第i个元素可以新开一个集合单独放,也可以放在以前开的一个集合中.

剩下的和NOIP一毛一样.

// It is made by XZZ
// Fei Fan Ya Xi Lie~~~
#include<cstdio>
#include<algorithm>
using namespace std;
#define il inline
#define rg register
#define vd void
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
int S[2001][2001],B[2001][2001];
int main(){
// freopen("2583.in","r",stdin);
// freopen("2583.out","w",stdout);
S[0][0]=1;
int T=gi(),k=gi();
for(rg int i=1;i<2001;++i){
for(rg int j=1;j<=i;++j)
S[i][j]=(S[i-1][j]*j+S[i-1][j-1])%k;
}
B[0][0]=S[0][0]%k==0;
for(rg int i=1;i<2001;++i){
B[i][0]=B[i-1][0]+(S[i][0]%k==0);
for(rg int j=1;j<=i;++j)
B[i][j]=B[i-1][j]+B[i][j-1]-B[i-1][j-1]+(S[i][j]%k==0);
for(rg int j=i+1;j<2001;++j)B[i][j]=B[i][j-1];
}
int i,j;
while(T--){
i=gi(),j=gi();
printf("%d\n",B[i][j]);
}
return 0;
}

JZOJ5371 组合数问题的更多相关文章

  1. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  2. 计算一维组合数的java实现

    背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...

  3. Noip2016提高组 组合数问题problem

    Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...

  4. C++单元测试 之 gtest -- 组合数计算.

    本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...

  5. NOIP2011多项式系数[快速幂|组合数|逆元]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  6. AC日记——组合数问题 落谷 P2822 noip2016day2T1

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  7. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  8. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  9. UOJ263 【NOIP2016】组合数问题

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

随机推荐

  1. MyEclipse 智能提示设置

    在实际的开发当中,编译器没有智能提示,确实是效率很低,下面我就给大家讲一下在MyEclipse中设置智能提示,方便大家的开发,希望能帮到大家. 方法一:首先,在MyEclipse的菜单栏中找到wind ...

  2. [翻译] OCMaskedTextField

    OCMaskedTextField https://github.com/OmerCora/OCMaskedTextField Simple class to display dynamically ...

  3. 使用CoreData [1]

    使用CoreData [1] 本篇教程能教你从无开始接触CoreData,包括新建工程,创建出实体,增删改查样样都有,属于使用CoreData最初级教程. 1. 创建带有CoreData的工程项目 2 ...

  4. mysql二进制安装方法

    Linux centos7环境下MySQL安装教程 一.安装依赖包: a.boost_1_59_0下载:wget http://nchc.dl.sourceforge.net/project/boos ...

  5. Apache下开启SSI配置,使html支持include包含

    有的时候,我们的页面有公共的导航栏navbar,公共的脚注footer,那么我们就想把这些公共部分独立成一个html文件,在要引用的地方像引用js,css一样,给包含进来. Apache下开启SSI配 ...

  6. Mongo.exe 无法定位程序输入点terminate于动态链接库 *.dll的解决办法

    Win7 或者Winserver 上安装新版的Mongo后,总是提示如上问题,可使用如下方法解决: 一是系统更新到SP1,并安装了KB2999226这个更新包(重要): 二是安装安装 Visual C ...

  7. SDN2017 第一次作业

    作业链接 阅读LearningNetworkProgramming.pdf,思考后回答以下问题: 你会选择作 网络编程 方向的程序员吗?为什么? 请搜寻并列出至少3个有影响力的中英文SDN的门户网站. ...

  8. C# 页面调用控制台应用程序

    var rootPath = System.Configuration.ConfigurationManager.AppSettings["rootPath"]; Process. ...

  9. Java8新特性 -- Lambda 方法引用和构造器引用

    一. 方法引用: 若Lambda体中的内容有方法已经实现了,我们可以使用“方法引用” 要求 方法的参数和返回值类型 和 函数式接口中的参数类型和返回值类型保持一致. 主要有三种语法格式: 对象 :: ...

  10. CF893F:Subtree Minimum Query(线段树合并)

    Description 给你一颗有根树,点有权值,m次询问,每次问你某个点的子树中距离其不超过k的点的权值的最小值.(边权均为1,点权有可能重复,k值每次询问有可能不同,强制在线) Input 第一行 ...