Description

定义"组合数"S(n,m)代表将n 个不同的元素拆分成m 个非空集合的方案数.

举个例子,将{1,2,3}拆分成2 个集合有({1},{2,3}),({2},{1,3}),({3},{1,2})三种拆分方法.

小猫想知道,如果给定n,m 和k,对于所有的0<=i<=n,0<=j<=min(i,m),有多少对(i,j),满足S(i,j)是k 的倍数.

注意,0 也是k 的倍数,S(0,0)=1,对于i>=1,S(i,0)=0.

Input

第一行有两个整数t,k,t 代表该测试点总共有多少组测试数据.接下来t 行,每行两个整数n,m.

Output

t 行,每行一个整数代表所有的0<=i<=n,0<=j<=min(i,m),有多少对(i,j),满足S(i,j)是k 的倍数.

Sample Input

输入1:

1 2

3 3

输入2:

2 5

4 5

6 7

Sample Output

输出1:

3

样例说明1:S(1,0),S(2,0),S(3,0)均是2 的倍数

输出2:

4

12

Hint

Data Constraint

对于20%的数据,满足n,m<=7,k<=5

对于60%的数据,满足n,m<=100,k<=10

对于每个子任务,都有50%的数据满足t=1

对于100%的数据,满足1<=n<=2000,1<=m<=2000,2<=k<=21,1<=t<=10000

666实力模仿NOIP,,,我那个时候不会杨辉三角QwQ

因为集合是无序的,所以可以推出S的转移方程:

\(S[i][j]=S[i-1][j]*j+S[i-1][j-1]\)

也就是第i个元素可以新开一个集合单独放,也可以放在以前开的一个集合中.

剩下的和NOIP一毛一样.

// It is made by XZZ
// Fei Fan Ya Xi Lie~~~
#include<cstdio>
#include<algorithm>
using namespace std;
#define il inline
#define rg register
#define vd void
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
int S[2001][2001],B[2001][2001];
int main(){
// freopen("2583.in","r",stdin);
// freopen("2583.out","w",stdout);
S[0][0]=1;
int T=gi(),k=gi();
for(rg int i=1;i<2001;++i){
for(rg int j=1;j<=i;++j)
S[i][j]=(S[i-1][j]*j+S[i-1][j-1])%k;
}
B[0][0]=S[0][0]%k==0;
for(rg int i=1;i<2001;++i){
B[i][0]=B[i-1][0]+(S[i][0]%k==0);
for(rg int j=1;j<=i;++j)
B[i][j]=B[i-1][j]+B[i][j-1]-B[i-1][j-1]+(S[i][j]%k==0);
for(rg int j=i+1;j<2001;++j)B[i][j]=B[i][j-1];
}
int i,j;
while(T--){
i=gi(),j=gi();
printf("%d\n",B[i][j]);
}
return 0;
}

JZOJ5371 组合数问题的更多相关文章

  1. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  2. 计算一维组合数的java实现

    背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...

  3. Noip2016提高组 组合数问题problem

    Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...

  4. C++单元测试 之 gtest -- 组合数计算.

    本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...

  5. NOIP2011多项式系数[快速幂|组合数|逆元]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  6. AC日记——组合数问题 落谷 P2822 noip2016day2T1

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  7. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  8. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  9. UOJ263 【NOIP2016】组合数问题

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

随机推荐

  1. 使用uwsgi发布项目

    1.先下载 uwsgi 指定豆瓣源下载 pip install -i https://pypi.douban.com/simple uwsgi 2.查看你的uwsgi基于那个python解释器运行的 ...

  2. Oracle恢复删除数据

    可以通过SCN和时间戳两种方法来恢复. 一.通过SCN恢复删除且已经提交的数据 查询当前SCN select current_scn from v$database; 如图: 缩小范围进行查询 查询到 ...

  3. 一、CSS概述 二、CSS的选择器(认识) 三、CSS样式和属性(练习) 四、重构商城首页DIV+CSS(页面布局)(重点) 浮动/更改显示方式

    一.CSS概述###<1>概念 DIV,就是一个HTML元素,块级元素,通常结合CSS进行页面的布局. CSS,层叠样式表,给HTML元素增强显示. ###<2>作用 样式定义 ...

  4. November 30th 2016 Week 49th Wednesday

    Your attitude, not your aptitude, will determine your altitude. 决定你人生高度的,不是你的才能,而是你的态度. Basically, I ...

  5. THE CUP OF LIFE即生命之杯。

    生命之杯 编辑 THE CUP OF LIFE即生命之杯. <生命之杯>(西班牙语:La copa de la vida,英语:The Cup of Life)是一首由波多黎各裔歌手瑞奇· ...

  6. 循环while 和 continue

    while 1: print("行动吧") # 组成:while 条件: #条件为真,则执行语句块.之后再回去判断条件是否为真,再执行....till条件为假为止. 语句块 # 条 ...

  7. 10条Linux 命令了解服务器当前性能

    参考:http://www.infoq.com/cn/news/2015/12/linux-performance 1. uptime 如果电脑运行缓慢,执行 uptime 可以大致查看Linux服务 ...

  8. 微信小程序的开发(一)

    我现在在学习,微信小程序开发,刚刚看看一篇对我特别有用的博客文章,我就把摘抄过来了,好好的学习一下. 序言 开始开发应用号之前,先看看官方公布的「小程序」教程吧!(以下内容来自微信官方公布的「小程序」 ...

  9. Day5 类和对象

    面向对象编程OOP 类:相似对象的集合. 对象 对象:实体.一切可以被描述的事物. 属性:特征. 方法:动作,行为. 类和对象的区别 [1]类时抽象的,对象是具体的. [2]类是一个模板,创建出来的对 ...

  10. C语言不使用加号实现加法运算的几种方法

    今天看到<编码:隐匿在计算机软硬件背后的语言>的第十二章:二进制加法器.讲述了全加器,半加器的原理以及如何实现加法.实现加法时所使用的全加器,半加器中包含的所有逻辑门在C语言中都有相应的运 ...