Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

题意:求一个图的生成树中,边最大权值和最小权值差的最小值。

思路:由于数据范围较少,可以选择暴力,生成不同的生成树,之后记录下最小值即可

AC代码:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <queue>
#include <map>
#include <algorithm>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f const int maxn=; int par[maxn]; struct node{
int x,y,w;
} edge[];; bool cmp(node a,node b){
return a.w<b.w;
} int init(int n){
for(int i=;i<=n;i++){
par[i]=i;
}
} int find(int x){
if(par[x]==x){
return x;
}else{
return par[x]=find(par[x]);
}
} int unite(int x,int y){
x=find(x);
y=find(y);
if(x==y){
return ;
}else{
par[x]=y;
return ;
}
} int main(){
int n,m;
while(scanf("%d%d",&n,&m)==&&!(!n&&!m)){
int mins=inf;
for(int i=;i<m;i++){
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].w);
}
sort(edge,edge+m,cmp); for(int i=;i<m;i++){
int cnt=;
init(n);
for(int j=i;j<m;j++){
if(unite(edge[j].x,edge[j].y)){
cnt++;
if(cnt==n-){
int tmp=edge[j].w-edge[i].w;
if(mins>tmp)mins=tmp;
break;
}
}
}
}
if(mins==inf)printf("-1\n");
else printf("%d\n",mins);
}
return ;
}

Uva1395 POJ3522 Slim Span (最小生成树)的更多相关文章

  1. 最小生成树POJ3522 Slim Span[kruskal]

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7594   Accepted: 4029 Descrip ...

  2. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

  3. POJ3522 Slim Span

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7462   Accepted: 3959 Descrip ...

  4. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  5. uva1395 - Slim Span(最小生成树)

    先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...

  6. 【kruscal】【最小生成树】poj3522 Slim Span

    求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...

  7. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  8. UVA 1395 Slim Span 最小生成树

    题意: 给你一个图,让你求这个图中所有生成树中满足题目条件的,这个条件是生成树中最长边与最短边的差值最小. 思路: 根据最小瓶颈生成树的定义:在一个有权值的无向图中,求一个生成树最大边的权值尽量小.首 ...

  9. Slim Span (最小生成树)

    题意 求生成树的最长边与最短边的差值的最小值 题解 最小生成树保证每一条边最小,就只要枚举最小边开始,跑最小生成树,最后一个值便是最大值 在枚举最小边同时维护差值最小,不断更新最小值. C++代码 / ...

随机推荐

  1. 对于移动端浏览器touch事件的研究总结(4)判断手指滑动方向

    最近有一些微信的项目,虽然页面很简单,但配合手势后的效果却是很不错的.最基本的效果就是手指向上滑,页面配合css3出现一个展开效果,手指向下滑将展开的内容按原路径收起.其实就是一个简单的判断手指滑动方 ...

  2. [WPF]记一个Win8"缩放级别"设置导致的问题

    这是我电脑的分辨率设置: 关键在于设置了缩放级别"较大",即150%的缩放. 接下来在WinForm中用各种方法取得的屏幕分辨率都是缩放之后的,但是这个时候的鼠标事件中鼠标位置也是 ...

  3. Mybatis源码正确打开方式

    精心挑选要阅读的源码项目: 饮水思源——官方文档,先看文档再看源码: 下载源码,安装到本地,保证能编译运行: 从宏观到微观,从整体到细节: 找到入口,抓主放次,梳理核心流程: 源码调试,找到核心数据结 ...

  4. Java集合--概述

    目录 Java集合--概述 摘要 图示 正文 Java集合--概述 摘要 ​ 本文主要介绍集合的整体概念,并作为接下来Java集合实现类讲解的索引. 图示 ​ 这是在网上看到了这样一张图,感觉很清晰, ...

  5. 高并发第十一弹:J.U.C -AQS(AbstractQueuedSynchronizer) 组件:Lock,ReentrantLock,ReentrantReadWriteLock,StampedLock

    既然说到J.U.C 的AQS(AbstractQueuedSynchronizer)   不说 Lock 是不可能的.不过实话来说,一般 JKD8 以后我一般都不用Lock了.毕竟sychronize ...

  6. vue+element ui 的时间控件选择 年月日时分

    前言:工作中用到 vue+element ui 的前端框架,需要选择年月日时分,但element ui官网demo有没有,所以记录一下.转载请注明出处:https://www.cnblogs.com/ ...

  7. cf1000F. One Occurrence(线段树 set)

    题意 题目链接 Sol (真后悔没打这场EDU qwq) 首先把询问离线,预处理每个数的\(pre, nxt\),同时线段树维护\(pre\)(下标是\(pre\),值是\(i\)),同时维护一下最大 ...

  8. JavaScript中==和===的区别(面试题目)

    ==用于一般比较,===用于严格比较;==在比较的时候可以转换数据类型,===严格比较,只要类型不匹配就返回flase. 举例说明: "1" == true; //true 类型不 ...

  9. 使用镶嵌数据集 MosaicDataSet管理不同分辨率影像数据

    镶嵌数据集 MosaicDataSet是Esri推出的一种用于管理海量影像数据的数据模型,它是Geodatabase数据模型的一个子集定义. 该数据模型强大之处在于它能统一管理不同采集时间.不同采集来 ...

  10. Android sdcard之read-only

    AndroidManifest.xml是否加入了SDCard的权限设置 <!-- 创建与删除文件权限 --> <uses-permission android:name=" ...