Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

题意:求一个图的生成树中,边最大权值和最小权值差的最小值。

思路:由于数据范围较少,可以选择暴力,生成不同的生成树,之后记录下最小值即可

AC代码:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <queue>
#include <map>
#include <algorithm>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f const int maxn=; int par[maxn]; struct node{
int x,y,w;
} edge[];; bool cmp(node a,node b){
return a.w<b.w;
} int init(int n){
for(int i=;i<=n;i++){
par[i]=i;
}
} int find(int x){
if(par[x]==x){
return x;
}else{
return par[x]=find(par[x]);
}
} int unite(int x,int y){
x=find(x);
y=find(y);
if(x==y){
return ;
}else{
par[x]=y;
return ;
}
} int main(){
int n,m;
while(scanf("%d%d",&n,&m)==&&!(!n&&!m)){
int mins=inf;
for(int i=;i<m;i++){
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].w);
}
sort(edge,edge+m,cmp); for(int i=;i<m;i++){
int cnt=;
init(n);
for(int j=i;j<m;j++){
if(unite(edge[j].x,edge[j].y)){
cnt++;
if(cnt==n-){
int tmp=edge[j].w-edge[i].w;
if(mins>tmp)mins=tmp;
break;
}
}
}
}
if(mins==inf)printf("-1\n");
else printf("%d\n",mins);
}
return ;
}

Uva1395 POJ3522 Slim Span (最小生成树)的更多相关文章

  1. 最小生成树POJ3522 Slim Span[kruskal]

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7594   Accepted: 4029 Descrip ...

  2. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

  3. POJ3522 Slim Span

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7462   Accepted: 3959 Descrip ...

  4. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  5. uva1395 - Slim Span(最小生成树)

    先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...

  6. 【kruscal】【最小生成树】poj3522 Slim Span

    求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...

  7. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  8. UVA 1395 Slim Span 最小生成树

    题意: 给你一个图,让你求这个图中所有生成树中满足题目条件的,这个条件是生成树中最长边与最短边的差值最小. 思路: 根据最小瓶颈生成树的定义:在一个有权值的无向图中,求一个生成树最大边的权值尽量小.首 ...

  9. Slim Span (最小生成树)

    题意 求生成树的最长边与最短边的差值的最小值 题解 最小生成树保证每一条边最小,就只要枚举最小边开始,跑最小生成树,最后一个值便是最大值 在枚举最小边同时维护差值最小,不断更新最小值. C++代码 / ...

随机推荐

  1. 照猫画虎owin oauth for qq and sina

    ms随vs2013推出了mvc5,mvc5自带的模板项目中引用了新的身份认证框架 ms identity.其中owin部分实现了google,facebook,twitter等国外常见的第三方用户.可 ...

  2. ASP.NET MVC控制器里捕获视图的错误验证信息(ErrorMessage)

    ViewModel类: /// <summary> /// 评论用验证视图 /// </summary> public partial class VCreateShopCom ...

  3. [源码] 定义String s="abcd", 求长度

    一般会答: s.length() 看源码是如何实现的: /** * Returns the length of this string. * The length is equal to the nu ...

  4. 大话JVM(一):垃圾收集算法

     系列介绍|本系列主要是记录学习jvm过程中觉得重要的内容,方便以后复习 在说垃圾收集算法之前,先要说一下垃圾收集,从大的讲,垃圾收集需要考虑三件事情: 1.哪些内存需要回收 2.什么时候回收 3.如 ...

  5. K:单词查找树(Trie)

      单词查找树,又称前缀树或字典树,是一种有序树,用于保存关联数组,其中的键通常是字符串.Trie可以看作是一个确定有限状态自动机(DFA).与二叉查找树不同,键不是直接保存在节点中,而是由节点在树中 ...

  6. POJ1321(KB1-A 简单搜索)

    棋盘问题 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 40872 Accepted: 19936 Description 在一 ...

  7. set集合去重机制

  8. druapl7:"Notice: A non well formed numeric value encountered 在 _hierarchical_select_hierarchy_generate() "

    这个是很诡异的一个Notice错误提醒,因为我在Drupal7.54+PHP7.0.1的环境下,并没有报这个错.但是我再Drupal7.59+PHP7.1.7的环境下就报错了.很奇怪,按照报错信息bi ...

  9. Dynamics 365Online 查询Web Api的请求WebUri

    在on-premises版本中,获取weburi的方式是进设置-自定义项-开发人员资源中查看地址,但online版本中的地址会有些许的差异 online的开发者资源中的地址如下图,如果你在页面java ...

  10. GIS在水利中的应用

    摘要  GIS具有数据存储.查询.统计.图形显示.分析.模拟.决策和预测等功能,在水利中得到越来越广泛的应用,可谓水利现代化的“火车头”. 关键词 GIS 水利 应用 地理信息系统GIS通常泛指用于获 ...