Uva1395 POJ3522 Slim Span (最小生成树)
|
Description Given an undirected weighted graph G, you should find one of spanning trees specified as follows. The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e). A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T. ![]() Figure 5: A graph G and the weights of the edges For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b). ![]() Figure 6: Examples of the spanning trees of G There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1. Your job is to write a program that computes the smallest slimness. Input The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices). Output For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters. Sample Input 4 5 Sample Output 1 Source |
题意:求一个图的生成树中,边最大权值和最小权值差的最小值。
思路:由于数据范围较少,可以选择暴力,生成不同的生成树,之后记录下最小值即可
AC代码:
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <queue>
#include <map>
#include <algorithm>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f const int maxn=; int par[maxn]; struct node{
int x,y,w;
} edge[];; bool cmp(node a,node b){
return a.w<b.w;
} int init(int n){
for(int i=;i<=n;i++){
par[i]=i;
}
} int find(int x){
if(par[x]==x){
return x;
}else{
return par[x]=find(par[x]);
}
} int unite(int x,int y){
x=find(x);
y=find(y);
if(x==y){
return ;
}else{
par[x]=y;
return ;
}
} int main(){
int n,m;
while(scanf("%d%d",&n,&m)==&&!(!n&&!m)){
int mins=inf;
for(int i=;i<m;i++){
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].w);
}
sort(edge,edge+m,cmp); for(int i=;i<m;i++){
int cnt=;
init(n);
for(int j=i;j<m;j++){
if(unite(edge[j].x,edge[j].y)){
cnt++;
if(cnt==n-){
int tmp=edge[j].w-edge[i].w;
if(mins>tmp)mins=tmp;
break;
}
}
}
}
if(mins==inf)printf("-1\n");
else printf("%d\n",mins);
}
return ;
}
Uva1395 POJ3522 Slim Span (最小生成树)的更多相关文章
- 最小生成树POJ3522 Slim Span[kruskal]
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7594 Accepted: 4029 Descrip ...
- POJ-3522 Slim Span(最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8633 Accepted: 4608 Descrip ...
- POJ3522 Slim Span
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7462 Accepted: 3959 Descrip ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- uva1395 - Slim Span(最小生成树)
先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...
- 【kruscal】【最小生成树】poj3522 Slim Span
求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- UVA 1395 Slim Span 最小生成树
题意: 给你一个图,让你求这个图中所有生成树中满足题目条件的,这个条件是生成树中最长边与最短边的差值最小. 思路: 根据最小瓶颈生成树的定义:在一个有权值的无向图中,求一个生成树最大边的权值尽量小.首 ...
- Slim Span (最小生成树)
题意 求生成树的最长边与最短边的差值的最小值 题解 最小生成树保证每一条边最小,就只要枚举最小边开始,跑最小生成树,最后一个值便是最大值 在枚举最小边同时维护差值最小,不断更新最小值. C++代码 / ...
随机推荐
- Vertica使用Database Designer创建完整的设计
Vertica Database Designer 分析逻辑架构,示例数据库可以分析实力查询. 创建可自动部署或手动部署的物理架构设计(一组投射) 任何不具备数据库专业知识的人员均可使用 可以随时运行 ...
- SPA应用部署时首屏启动慢问题解决方案
SPA应用部署时首屏启动慢问题解决方案 使用vuejs开发的单页应用,打包部署上线后,发现首屏启动时间达到了惊人的10s左右,于是开始优化,目前使用到的总结如下: 巧用webpack插件 1.抽取cs ...
- 啰哩吧嗦式讲解在windows 家庭版安装docker
1.docker是什么,为什么要使用docker Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中, 然后发布到任何流行的 Linux 机器上,也可以实 ...
- vue+element ui 的表格列使用组件
前言:工作中用到 vue+element ui 的前端框架,有这个场景:很多表格的列有许多一样的,所以考虑将列封装为组件.转载请注明出处:https://www.cnblogs.com/yuxiaol ...
- mysql 优化海量数据插入和查询性能
对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长.特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久.因此,优化数据库插入性能是很有意义的. ...
- java.lang.NoSuchMethodError 报500
1. 概述 mvc项目 接口报500 localhost 错误日志 07-Jan-2019 17:12:43.664 SEVERE [catalina-exec-21] org.apache.cata ...
- js实现链式操作
前言:前不久阿里远程面试时问了我一个问题,如下: function Person(){}; var person = new Person(); //实现person.set(10).get()返回2 ...
- 移动端点击输入框,弹出键盘,底部被顶起问题(vue)
这个问题相信做移动端开发的童鞋会有深刻体会,以前用jq开发时就很头疼这个问题,每次底部footer部分需要用position:fixed,如果页面内容不是很长,没有超出屏幕范围,那就还好,没有问题:一 ...
- Spring Boot—11控制器Controller
package com.sample.smartmap.controller; import org.springframework.beans.factory.annotation.Autowire ...
- CSS 几款比较常用的翻转特效
第一个:360度翻转特效 <style>* { margin:0; padding:0; } .aa { width: 220px; height: 220px; margin: 0 au ...

