Balance
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 10773   Accepted: 6685

Description

Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. 

It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25.
Gigel may droop any weight of any hook but he is forced to use all the weights. 

Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced. 



Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device. 

It is guaranteed that will exist at least one solution for each test case at the evaluation. 

Input

The input has the following structure: 

• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20); 

• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis
(when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the
hook is attached: '-' for the left arm and '+' for the right arm); 

• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values. 

Output

The output contains the number M representing the number of possibilities to poise the balance.

Sample Input

2 4
-2 3
3 4 5 8

Sample Output

2

Source

给出每一个钩子的位置。和砝码的重量,问将砝码所有挂上时,有几种平衡的挂法?
这里有一个天平平衡的概念,转化为天平的左右的差,假设差是0那么天平平衡,所以。dp[i][j]代表当挂第i个砝码时差为j的种类。

避免反复选择,所以要使用二维的。
 
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <math.h>
using namespace std;
#define maxn 8000
int cc[30] , gg[30] ;
int dp[30][maxn<<1] ;
int main()
{
int c , g , i , j , k , max1 = 0 , m = 0 ;
memset(dp,0,sizeof(dp));
dp[0][maxn] = 1 ;
scanf("%d %d", &c, &g);
for(i = 0 ; i < c ; i++)
{
scanf("%d", &cc[i]);
if( abs(cc[i]) > max1 )
max1 = abs(cc[i]) ;
}
for(i = 1 ; i <= g ; i++)
{
scanf("%d", &gg[i]);
m += max1*gg[i] ;
}
max1 = m ;
for(i = 1 ; i <= g ; i++)
{
for(j = 0 ; j < c ; j++)
{
if( cc[j] > 0 )
{
m = gg[i]*cc[j] ;
for(k = maxn + max1 ; k >= m ; k--)
dp[i][k] += dp[i-1][k-m] ;
}
else
{
m = gg[i]*cc[j] ;
for(k = m ; k <= maxn+max1 ; k++)
dp[i][k] += dp[i-1][k-m] ;
}
}
}
printf("%d\n", dp[g][maxn]);
return 0;
}

poj1837--Balance(dp:天平问题)的更多相关文章

  1. POJ1837 Balance(DP)

    POJ1837http://poj.org/problem?id=1837 题目大意就是说有一个称上有C个挂钩,告诉你每个挂钩的位置,现在有G个重物,求是之平衡的方法数. 转化一下:DP[i][j]表 ...

  2. POJ1837 Balance[分组背包]

    Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13717   Accepted: 8616 Descript ...

  3. HDU 5616 Jam's balance(DP)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=5616 题目: Jam's balance Time Limit: 2000/1000 MS (Java ...

  4. [poj 1837] Balance dp

    Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...

  5. poj1837 Balance

    Balance  POJ - 1837 题目大意: 有一个天平,天平左右两边各有若干个钩子,总共有C个钩子,有G个钩码,求将钩码全部挂到钩子上使天平平衡的方法的总数. 其中可以把天枰看做一个以x轴0点 ...

  6. POJ 1837 -- Balance(DP)

     POJ 1837 -- Balance 转载:優YoU   http://user.qzone.qq.com/289065406/blog/1299341345 提示:动态规划,01背包 初看此题第 ...

  7. Codeforces Beta Round #17 C. Balance DP

    C. Balance 题目链接 http://codeforces.com/contest/17/problem/C 题面 Nick likes strings very much, he likes ...

  8. POJ1837 Balance 背包

    题目大意: 有一个天平,天平左右两边各有若干个钩子,总共有C个钩子(每个钩子有相对于中心的距离,左负右正),有G个钩码,求将钩码全部挂到钩子上使天平平衡的方法的总数. 将每个砝码看作一组,组内各个物品 ...

  9. HDU 1709 The Balance( DP )

    The Balance Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  10. 【做题】ECFinal2018 J - Philosophical … Balance——dp

    原文链接 https://www.cnblogs.com/cly-none/p/ECFINAL2018J.html 题意:给出一个长度为\(n\)的字符串\(s\),要求给\(s\)的每个后缀\(s[ ...

随机推荐

  1. C/C++ 之输入输出

    因为C++向下兼容C,所以有多种输入输出的方式,cin/cout十分简洁,但个人觉得不如scanf/printf来的强大,而且在做算法题时,后者运行速度也快些. scanf/printf #inclu ...

  2. wdcp(WDlinux Control Panel) 快速安装RPM包,lanmp一件安装

    lanmp一键安装包是wdlinux官网2010年开始推出的lamp,lnmp,lnamp(apache,nginx,php,mysql,zend,eAccelerator,pureftpd)应用环境 ...

  3. 力特ZE398C驱动光盘-USB转RS232-支持Windows 10/Mac

    这个工具是USB1.1的,相对来说比较老,一开始做小白鼠不知道买了USB1.1的,所以我不建议买这个,还有其它的型号,支持USB2.0和USB3.0,不过价格也相对来说比较贵,这个才30块钱左右. 关 ...

  4. VHDL语言实现的任意整数分频器

    fpga中,一般外接的晶振是50Mhz,如果电路中一个模块需要25mhz时钟,那么进行一个2分频,这个是相当容易的,下面是一种方法,还有可以用一个二进制计数器实现.这里就不写代码了.easy.同样的原 ...

  5. RocketMQ的部署方式及持久化方式

    RocketMQ 的 Broker 有三种集群部署方式: 1. 单台 Master 部署: 2. 多台 Master部署: 3. 多 Master 多 Slave 部署:采用第 3 种部署方式时, M ...

  6. Spring Boot整合RabbitMQ详细教程

    原文:https://blog.csdn.net/qq_38455201/article/details/80308771 1.首先我们简单了解一下消息中间件的应用场景 异步处理 场景说明:用户注册后 ...

  7. IOS开发之深拷贝与浅拷贝(mutableCopy与Copy)详解

    copy与retain的区别: copy是创建一个新对象,retain是创建一个指针,引用对象计数加1.Copy属性表示两个对象内容相同,新的对象retain为1 ,与旧有对象的引用计数无关,旧有对象 ...

  8. python笔记30-docstring注释添加变量

    前言 python里面添加字符串注释非常简单,如何将变量放入 python 的函数注释里面呢? docstring也就是给代码加注释的内容了,python可以给函数,类.方法,模块添加注释内容,注释标 ...

  9. #line 的作用是改变当前行数和文件名称

    #line 的作用是改变当前行数和文件名称,它们是在编译程序中预先定义的标识符命令的基本形式如下:   #line number["filename"]其中[]内的文件名可以省略. ...

  10. json和gson的区别

    json是一种数据格式,便于数据传输.存储.交换gson是一种组件库,可以把java对象数据转换成json数据格式 GSON简单处理JSON json格式经常需要用到,google提供了一个处理jso ...