洛谷P2822组合数问题
传送门啦
15分暴力,但看题解说暴力分有30分。
就是找到公式,然后套公式。。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
long long read(){
char ch;
bool f = false;
while((ch = getchar()) < '0' || ch > '9')
if(ch == '-') f = true;
int res = ch - 48;
while((ch = getchar()) >= '0' && ch <='9')
res = res * 10 - ch + 48;
return f ? res + 1 : res;
}
long long jc(long long a){
//求阶乘
if(a == 0) return 1;
long long ans = 1;
for(int i=1;i<=a;i++)
ans *= i;
return ans; //b = !a
}
long long C(long long n,long long m){
return jc(n) / (jc(m) * jc(n - m));
}
//组合数公式:Cn^m = !n / (!m * !(n - m))
long long t,k,n,m;
long long sum,x;
int main(){
t = read(); k = read();
while(t--){
x = 0;
n = read(); m = read();
//sum = jc(n) / (jc(m) * jc(n - m));
for(long long i=1;i<=n;i++){
//int j = min(i , m);
for(long long j=1;j<=min(i,m);j++){
//sum = jc(i) / (jc(j) * jc(i - j));
if(C(i,j) % k == 0)
x++;
}
}
printf("%lld\n",x);
}
return 0;
}

15分,我现在用了组合数的递推公式,按理说应该更快了,但。。(想不通,数据范围在那里啊)
c[i][j]即为从i件物品中选j件的方案数。如果第i件物品不选,方案数就变为c[i-1][j],如果选第i件物品,方案数就变为c[i-1][j-1],总方案数就为两种情况的方案数之和
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 2005;
long long read(){
char ch;
bool f = false;
while((ch = getchar()) < '0' || ch > '9')
if(ch == '-') f = true;
int res = ch - 48;
while((ch = getchar()) >= '0' && ch <='9')
res = res * 10 - ch + 48;
return f ? res + 1 : res;
}
long long t,k,n,m;
long long sum,x,C[maxn][maxn];
int main(){
t = read(); k = read();
while(t--){
x = 0;
C[1][0] = C[1][1] = 1;
n = read(); m = read();
for(long long i=2;i<=n;i++){
C[i][0] = 1;
for(long long j=1;j<=min(i,m);j++){
C[i][j] = C[i-1][j] + C[i-1][j-1];
if(C[i][j] % k == 0)
x++;
}
}
printf("%lld\n",x);
}
return 0;
}
为了提高效率,我们可以进行进一步的优化,就是预处理出组合数从而求出所有区间的满足条件的组合数个数,这里就要用到二维前缀和
杨辉三角
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 2005;
inline int read() {
int x=0,f=1;
char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
long long t,k,n,m;
long long sum[maxn][maxn],x,C[maxn][maxn];
void work(){
for(int i=1;i<=2000;i++){
C[i][0] = 1;
C[i][i] = 1;
}
C[1][1] = 1;
for(long long i=2;i<=2000;i++)
for(long long j=1;j<i;j++){
C[i][j] = (C[i-1][j] + C[i-1][j-1]) % k;
}
for(long long i=1;i<=2000;i++){
for(long long j=1;j<=i;j++){
sum[i][j] = sum[i-1][j] + sum[i][j-1] - sum[i-1][j-1];
if(C[i][j] == 0)
sum[i][j]++ ;
}
sum[i][i+1] = sum[i][i];
}
}
int main(){
memset(C,0,sizeof(C));
memset(sum,0,sizeof(sum));
t = read(); k = read();
work();
while(t--){
n = read(); m = read();
m = min(n , m);
printf("%lld\n",sum[n][m]);
}
return 0;
}
还有一个事不得不说,我改了一下午竟然发现是自己的快读打错了:
修改后:
暴力 40分
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
inline int read() {
int x=0,f=1;
char ch=getchar();
while(ch>'9'||ch<'0')
{
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
long long jc(long long a){
//求阶乘
if(a == 0) return 1;
long long ans = 1;
for(int i=1;i<=a;i++)
ans *= i;
return ans; //b = !a
}
long long C(long long n,long long m){
return jc(n) / (jc(m) * jc(n - m));
}
//组合数公式:Cn^m = !n / (!m * !(n - m))
long long t,k,n,m;
long long sum,x;
int main(){
t = read(); k = read();
while(t--){
x = 0;
n = read(); m = read();
//sum = jc(n) / (jc(m) * jc(n - m));
for(long long i=1;i<=n;i++){
//int j = min(i , m);
for(long long j=1;j<=min(i,m);j++){
//sum = jc(i) / (jc(j) * jc(i - j));
if(C(i,j) % k == 0)
x++;
}
}
printf("%lld\n",x);
}
return 0;
}
递推公式 70
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 2005;
inline int read() {
int x=0,f=1;
char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
long long t,k,n,m;
long long sum,x,C[maxn][maxn];
int main(){
t = read(); k = read();
while(t--){
x = 0;
C[1][0] = C[1][1] = 1;
n = read(); m = read();
for(long long i=2;i<=n;i++){
C[i][0] = 1;
for(long long j=1;j<=min(i,m);j++){
C[i][j] = C[i-1][j] + C[i-1][j-1];
if(C[i][j] % k == 0)
x++;
}
}
printf("%lld\n",x);
}
return 0;
}
洛谷P2822组合数问题的更多相关文章
- 洛谷P2822 组合数问题(题解)
https://www.luogu.org/problemnew/show/P2822(题目传送) 先了解一下有关组合数的公式:(m在上,n在下) 组合数通项公式:C(n,m)=n!/[m!(n-m) ...
- 洛谷P2822 组合数问题
输入输出样例 输入样例#1: 1 2 3 3 输出样例#1: 1 输入样例#2: 2 5 4 5 6 7 输出样例#2: 0 7 说明 [样例1说明] 在所有可能的情况中,只有C_2^1 = 2C21 ...
- 洛谷 P2822 组合数问题
题目描述 组合数C_n^mCnm表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的 ...
- 洛谷——P2822 组合数问题
https://www.luogu.org/problem/show?pid=2822 题目描述 组合数C_n^mCnm表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三 ...
- 【洛谷P2822 组合数问题】
题目连接 #include<iostream> #include<cstring> #include<cstdio> #include<cctype> ...
- 洛谷P2822 组合数问题 杨辉三角
没想到这道题竟然这么水- 我们发现m,n都非常小,完全可以O(nm)O(nm)O(nm)预处理出stripe数组,即代表(i,j)(i,j)(i,j) 及其向上的一列的个数,然后进行递推即可. #in ...
- 洛谷 P2822 组合数问题 题解
今天又考试了...... 这是T2. Analysis 考试时想了一个判断质因数个数+打表的神奇方法,但没在每次输入n,m时把ans置0,50分滚粗. 看了题解才发现原来是杨辉三角+二维前缀和,果然还 ...
- 【题解】洛谷P2822 [NOIP2016TG ]组合数问题 (二维前缀和+组合数)
洛谷P2822:https://www.luogu.org/problemnew/show/P2822 思路 由于n和m都多达2000 所以暴力肯定是会WA的 因为整个组合数是不会变的 所以我们想到存 ...
- 【洛谷p2822】组合数问题
(突然想 ??忘掉了wdt) (行吧那就%%%hmr) 组合数问题[传送门] (因为清明要出去培训数学知识所以一直在做数论) 组合数<=>杨辉三角形(从wz那拐来的技能 ...
随机推荐
- 【左偏树】【P3261】 [JLOI2015]城池攻占
Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其 ...
- python入门:求1-2+3-4+5...99的所有数的和
#!/usr/bin/env python # -*- coding:utf-8 -*- #求1-2+3-4+5...99的所有数的和 """ 给start赋值为1,su ...
- ASP.NET MVC 3 常用
http://blog.csdn.net/churujianghu/article/details/7297358 1.ASP.NET MVC 3 如何去除默认验证 这个默认验证是在web.confi ...
- PPTP协议握手流程分析--转载
一 PPTP概述 PPTP(Point to Point Tunneling Protocol),即点对点隧道协议.该协议是在PPP协议的基础上开发的一种新的增强型安全协议,支持多协议虚拟专用网 ...
- Tensorflow实战Google深度学习框架-总结-1
第一章:深度学习简介 1⃣️应用有 1.计算机视觉 2.语音识别 3.自然语言处理 4.人机博弈 2⃣️深度学习,机器学习,AI 的关系
- python pip安装--不是内部或外部命令--解决方案
首先在 命令行中输入 python -m ensurepip 创建出pip3.exe , 并找到pip3.exe所在的Scripts路径 使命令行在Scripts路径下 输入pip3 install ...
- Java基础-面向对象第三大特性之多态(polymorphism)
Java基础-面向对象第三大特性之多态(polymorphism) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.多态概述 多态是继封装,继承之后,面向对象的第三大特性,多态的 ...
- Java基础-Calendar类常用方法介绍
Java基础-Calendar类常用方法介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Calendar类概念 Calendar 类是一个抽象类,它为特定瞬间与一组诸如 Y ...
- python---CMDB配置管理数据库
前戏:项目目的 是一个运维自动化管理项目: 为了减少人工干预,降低人员成本 ---资产管理 --操作管理 避免人员直接操作服务器,使用后台去统一操作 一:实现方式 (一)Agent基于shell命令实 ...
- linux diff 命令
diff 命令是 linux上非常重要的工具,用于比较文件的内容,特别是比较两个版本不同的文件以找到改动的地方.diff在命令行中打印每一个行的改动.最新版本的diff还支持二进制文件.diff程序的 ...