题目链接

一道思维好题啊...感觉这种类型的题很检验基本功是否扎实(像我这样的就挂了)。

题意:你有一棵\(n\)个点的树,每次随机选择一条边,将这条边的两个端点合并,并随机继承两个点标号中的一个,问对于每一个点来说,最终剩下的那个点标号等于它的标号的概率。\(n\leq 50\),用浮点数方式输出。

碰到浮点数输出的题就很怕卡精,不过这道题似乎不卡,担心卡精可以开\(long \ double\)(还要吐槽一句cf的\(C++11\)对\(long\ double\)的输出好像不是很资瓷...还要转\(double\)输出)。

好了现在开始讲做法吧。我们的大体思想是每一个点分别求解答案。对于每一个点,用某种方法算出它最终被留下的方案数,那么再除以\((n-1)!\)显然就是答案。不过要注意的一点是因为标号的继承是随机的,因此对于同一种删边顺序,得到的结果可能不同,因此我们算出的其实是所有顺序下这个点保留的概率的总和(可能是浮点数),但是为了接下来表达的简便,不妨不严谨的称其为方案数。

现在来关心怎么求出每一个点被留下的方案数,我们将要求答案的点\(x\)当作树的根,并用\(size_i\)表示以\(i\)为根的子树的大小。考虑树形\(dp\),我们用\(f_{i,j}\)表示当根节点的标号继承到\(i\)点时,如果\(i\)的子树还剩下\(j\)条边,根节点的标号最终被保留下来的方案数。那么\(f_{x,n-1}\)就是我们想要的答案。

我们先来解决一个小问题:

假设我们将当前节点\(u\)的子树划分为两部分,并且已经知道了左半部分还剩\(i\)条边时的方案数\(a\)和右半部分还剩\(j\)条边时的方案数\(b\),如何求解它们对整棵子树还剩\(i+j\)条边的方案数的贡献?

显然左右两部分的子树对对方是没有影响的,因此我们可以将左右的方案合并。只要剩下的左边的\(i\)条边和右边的\(j\)条边在之后删除的相对顺序不变,那么一定会得到同一种结果,因此这部分合并的方案数就是\({{i+j}\choose i}\)种(即在删除序列的\(i+j\)个空位种选\(i\)个给左边的边)。

同时我们还要注意已经删除的边,在真实的操作序列中它们也同样需要合在一起。因此和上面相似,我们假设左边原来一共有\(x\)条边,右边原来一共有\(y\)条边,那么这部分合并的方案数就是\({{x+y-i-j}\choose x-i}\)。

综上所述,它们的贡献应该是\(a*b*{{i+j}\choose i}*{{x+y-i-j}\choose x-i}\)。

那么沿着刚刚的想法继续思考,我们或许可以采取如下策略\(dp\):对于某一棵以\(u\)为根的子树,不考虑任何子树时有\(f_{u,0}=1\)。假如我们有一种方法,可以计算出一个单点在只考虑一棵子树时的答案,那么我们的问题就做完了,因为我们在新考虑一棵子树的时候,我们可以先计算只考虑它时的答案而将其视为我们刚刚所讲的“右半部分”,将之前已经计算完的部分视为“左半部分”,就可以直接按照之前所讲的方法合并。

现在我们只要解决如何计算只考虑\(u\)的某一棵子树时的答案,设其根为\(v\)。显然我们可以枚举\(i\),表示我们想要求其还剩下\(i\)条边时的答案,设其为\(g_i\),接着再枚举\(j\),考虑\(f_{v,j}\)对\(g_i\)的贡献。分三类情况讨论:

\(1\)、假设\(j<i\),显然合法的过程应该是这样的:\(v\)的子树中合并到还剩\(i-1\)条边时,根的标号继承到了\(u\)上,接着\(v\)的子树中的边继续合并到只剩\(j\)条边,接着根的标号再从\(u\)继承到了\(v\)上。注意到\(u\)的标号继承到\(v\)上发生的概率是\(\frac{1}{2}\),因此此时\(f_{v,j}\)对\(g_i\)的贡献是\(\frac{1}{2}f_{v,j}\)。

\(2\)、假设\(j=i\),显然合法的过程应该是这样的:\(v\)的子树原来共有\(size_v-1\)条边,如果要剩下\(i\)条边,应该删除\(size_v-1-i\)条边,而\(u\)到\(v\)的连边也应该随着这些边的删除一起被删除,考虑被删除的\(size_v-1-i\)条边组成的序列,\(u\)到\(v\)的连边可以插入到\(size_v-i\)个空位(因为两端也是可以的)中的任何一个。同时我们可以发现如此一来,当根节点的标号继承到\(u\)时,\(u\)和\(v\)的连边已经消失,因此就不需要考虑那\(\frac{1}{2}\)的概率了,贡献是\((size_v-i)*f_{v,j}\)。

\(3\)、假设\(j>i\),画图考虑一下就发现这是没有合法方案的,贡献是\(0\)。

于是我们终于完成了最后一块拼图,得到了可行的解法。最后总结一下做法,我们分别计算每一个答案,接着进行树形\(dp\)。对于每一个新考虑的儿子,我们先计算只考虑这个子树的情况,接着将其与原有答案进行合并。计算一下复杂度,在每一个点更新它对父亲的贡献时似乎至多是\(O(n^2)\)的,但是考虑合并两个大小为\(x\)和\(y\)的子树,代价可以做到\(O(x*y)\),这等价于两个子树之间的点对数。因此一次dp的复杂度应该是总点对数即\(O(n^2)\),因此总复杂度是\(O(n^3)\)的。不过代码里我偷了个懒写了\(O(n^4)\)的做法,反正\(n\leq 50\)因此也是不要紧的。

我的代码:

#include<cstdio>
#include<vector>
using std::vector;
typedef long double ldb;
const int N=55;
int n;
vector<int> G[N];
int size[N];
ldb fact[N];
ldb dp[N][N],tmp[N],g[N];
inline ldb choose(int n,int m)
{
return fact[n]/(fact[m]*fact[n-m]);
}
void dfs(int now,int father)
{
register int i,j;
dp[now][0]=1;size[now]=1;
for(auto x:G[now])
{
if(x==father)
continue;
dfs(x,now);
for(i=0;i<=size[x];i++)
{
g[i]=0;
for(j=1;j<=size[x];j++)
if(j<=i)
g[i]+=0.5*dp[x][j-1];
else
g[i]+=dp[x][i];
}
for(i=0;i<size[now]+size[x];i++)
tmp[i]=0;
for(i=0;i<size[now];i++)
for(j=0;j<=size[x];j++)
tmp[i+j]+=dp[now][i]*g[j]*choose(i+j,i)*choose(size[now]-1-i+size[x]-j,size[now]-1-i);
for(i=0;i<size[now]+size[x];i++)
dp[now][i]=tmp[i];
size[now]+=size[x];
}
return;
}
signed main()
{
int x,y;
register int i;
scanf("%d",&n);
fact[0]=1;
for(i=1;i<=n-1;i++)
fact[i]=fact[i-1]*i;
for(i=1;i<=n-1;i++)
{
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
for(i=1;i<=n;i++)
{
dfs(i,0);
printf("%.9lf\n",(double)(dp[i][n-1]/fact[n-1]));
}
return 0;
}

Codeforces 1060 F. Shrinking Tree的更多相关文章

  1. Codeforces Round #375 (Div. 2) F. st-Spanning Tree 生成树

    F. st-Spanning Tree 题目连接: http://codeforces.com/contest/723/problem/F Description You are given an u ...

  2. Codeforces 1129 E.Legendary Tree

    Codeforces 1129 E.Legendary Tree 解题思路: 这题好厉害,我来复读一下官方题解,顺便补充几句. 首先,可以通过询问 \(n-1​\) 次 \((S=\{1\},T=\{ ...

  3. Codeforces Round #781(C. Tree Infection)

    Codeforces Round #781 C. Tree Infection time limit per test 1 second memory limit per test 256 megab ...

  4. Codeforces 461B Appleman and Tree(木dp)

    题目链接:Codeforces 461B Appleman and Tree 题目大意:一棵树,以0节点为根节点,给定每一个节点的父亲节点,以及每一个点的颜色(0表示白色,1表示黑色),切断这棵树的k ...

  5. Codeforces 959 F. Mahmoud and Ehab and yet another xor task

    \(>Codeforces\space959 F. Mahmoud\ and\ Ehab\ and\ yet\ another\ xor\ task<\) 题目大意 : 给出一个长度为 \ ...

  6. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  7. Codeforces 280C Game on tree【概率DP】

    Codeforces 280C Game on tree LINK 题目大意:给你一棵树,1号节点是根,每次等概率选择没有被染黑的一个节点染黑其所有子树中的节点,问染黑所有节点的期望次数 #inclu ...

  8. Codeforces A. Game on Tree(期望dfs)

    题目描述: Game on Tree time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  9. Codeforces 731 F. Video Cards(前缀和)

    Codeforces 731 F. Video Cards 题目大意:给一组数,从中选一个数作lead,要求其他所有数减少为其倍数,再求和.问所求和的最大值. 思路:统计每个数字出现的个数,再做前缀和 ...

随机推荐

  1. Object C学习笔记3-对象的使用和定义

    1. 如何定义一个对象 在面向对象的语言中,定义一个对象是使用Class关键字,而在Object-C中则是使用@interface,@interface用于定义对象的属性和方法,@implementa ...

  2. ATmega8仿真——键盘扫描的学习

    1.按键的使用特点 按键的应用主要是在按键闭合时改变电路的电平,但是一般情况下按键的开关都是机械弹性触点开关,即利用触点的接触和分离来实现电路的通断,所以在按键按下和释放时往往会产生抖动干扰. 消除抖 ...

  3. Tomcat学习(二)------Tomcat原理详解及请求过程

    Tomcat: Tomcat是一个JSP/Servlet容器.其作为Servlet容器,有三种工作模式:独立的Servlet容器.进程内的Servlet容器和进程外的Servlet容器. Tomcat ...

  4. stl源码分析之hash table

    本文主要分析g++ stl中哈希表的实现方法.stl中,除了以红黑树为底层存储结构的map和set,还有用哈希表实现的hash_map和hash_set.map和set的查询时间是对数级的,而hash ...

  5. python游戏编程——乌龟和鱼类场景编程

    综合举例: 游戏编程:按以下要求定义一个乌龟类和鱼类并尝试编写游戏. O    假设游戏场景为范围(x, y)为0<=x<=10,0<=y<=10 ·       游戏生成1只 ...

  6. 导入Cardboard SDK后Build到安卓平台出错:Unable to merge android manifests. (已解决)

    报错说“Unable to merge android manifests. See the consoler for more details.” 解决方法: 打开SDK Manager ,安装An ...

  7. MapReduce任务学习系列

    首先放一张官方图片,大致了解下整个MapReduce的处理过程. 抛出如下疑问: 1.MapReduce的基本原理是什么?即利用什么机制来实现的任务拆分处理? 2.MapReduce任务执行过程是什么 ...

  8. python实现atm机基本操作及购物车

    一.需求分析 ATM机要为用户提供转账,提现,还款,付款,消费流水,操作记录等操作接口 ATM机要为管理员提供创建用户,冻结解冻,修改额度的功能 ATM机管理员认证使用装饰器来实现 购物车要提供管理员 ...

  9. 琴声不等式--jensen

    (来自百度百科) 1. 凹函数,不加权 2. 凹函数,加权 3. 凸函数,不加权 4. 凸函数,加权 应用 在EM算法Q函数的推导中,用到了第二个不等式(凹函数,加权)

  10. 【Coursera-ML-Notes】线性回归(上)

    什么是机器学习 关于机器学习,有以下两种不同的定义. 机器学习是研究如何使电脑具备学习能力,而不用显式编程告诉它该怎么做. the field of study that gives computer ...