P2461 [SDOI2008]递归数列
题目描述
一个由自然数组成的数列按下式定义:
对于i <= k:ai = bi
对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k
其中bj 和 cj (1<=j<=k)是给定的自然数。写一个程序,给定自然数m <= n, 计算am + am+1 + am+2 + ... + an, 并输出它除以给定自然数p的余数的值。
输入输出格式
输入格式:
输入文件spp.in由四行组成。
第一行是一个自然数k。
第二行包含k个自然数b1, b2,...,bk。
第三行包含k个自然数c1, c2,...,ck。
第四行包含三个自然数m, n, p。
输出格式:
输出文件spp.out仅包含一行:一个正整数,表示(am + am+1 + am+2 + ... + an) mod p的值。
输入输出样例
2
1 1
1 1
2 10 1000003
142
说明
对于100%的测试数据:
1<= k <=15
1 <= m <= n <= 1018
对于20%的测试数据:
1<= k <=15
1 <= m <= n <= 106
对于30%的测试数据:
k=1 1 <= m <= n <= 1018
对于所有测试数据:
0<= b1, b2,... bk, c1, c2,..., ck<=109
1 <= p <= 108
Solution:
本题矩阵快速幂。
求$\sum_\limits{i=m}^{i\leq n}a_i$,可以转化为前缀和相减$s_n-s_{m-1}$。
那么我们需要快速求出$s_i$,我们发现$a_i$只与前$k$个$a$值有关,于是我们可以构建一个$(k+1)*(k+1)$的矩阵,存下前$k$个$a$值和当前的前缀和$s$。
转移矩阵的构造就补$1$并依次填好$c$值就好了。
代码:
/*Code by 520 -- 10.11*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
struct matrix{
int r,c;ll a[N][N];
il void clr(){memset(a,,sizeof(a));}
}ans,tp;
ll n,m,k,mod,b[N],c[N],s[N]; il matrix mul(matrix x,matrix y){
matrix tp; tp.clr();
tp.r=x.r,tp.c=y.c;
For(i,,x.r-) For(j,,y.c-) For(k,,x.c-)
tp.a[i][j]=(tp.a[i][j]+x.a[i][k]*y.a[k][j]%mod)%mod;
return tp;
} int main(){
ios::sync_with_stdio();
cin>>k;
For(i,,k) cin>>b[i],s[i]=(s[i-]+b[i]);
For(i,,k) cin>>c[i];
cin>>n>>m>>mod; ll tot=;
if(m<=k) cout<<(s[m]-s[n-])%mod,exit();
ans.r=,ans.c=k+; tp.r=tp.c=k+; ans.clr(),tp.clr();
For(i,,k-) ans.a[][i]=b[i+]%mod; ans.a[][k]=s[k]%mod;
For(i,,k-) tp.a[i][i-]=,tp.a[i][k-]=tp.a[i][k]=c[k-i]%mod;
tp.a[][k-]=tp.a[][k]=c[k]%mod;tp.a[k][k]=;
if(n<=k) tot-=s[n-]%mod;
else {
n-=k+;
while(n){
if(n&) ans=mul(ans,tp);
n>>=,tp=mul(tp,tp);
}
tot-=ans.a[][k];
}
ans.r=,ans.c=k+; tp.r=tp.c=k+; ans.clr(),tp.clr();
For(i,,k-) ans.a[][i]=b[i+]%mod; ans.a[][k]=s[k]%mod;
For(i,,k-) tp.a[i][i-]=,tp.a[i][k-]=tp.a[i][k]=c[k-i]%mod;
tp.a[][k-]=tp.a[][k]=c[k]%mod;tp.a[k][k]=;
m-=k;
while(m){
if(m&) ans=mul(ans,tp);
m>>=,tp=mul(tp,tp);
}
tot=(tot+mod+ans.a[][k])%mod;
cout<<tot;
return ;
}
P2461 [SDOI2008]递归数列的更多相关文章
- P2461 [SDOI2008]递归数列 矩阵乘法+构造
还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...
- BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )
矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...
- BZOJ3231: [Sdoi2008]递归数列
BZOJ3231: [Sdoi2008]递归数列 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + ...
- BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法
BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...
- 开始玩矩阵了!先来一道入门题![SDOI2008]递归数列
[SDOI2008]递归数列 题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + c ...
- [bzoj3231][SDOI2008]递归数列——矩阵乘法
题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂
题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- [luogu2461 SDOI2008] 递归数列 (矩阵乘法)
传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...
- [SDOI2008]递归数列
嘟嘟嘟 裸的矩阵快速幂,构造一个\((k + 1) * (k + 1)\)的矩阵,把sum[n]也放到矩阵里面就行了. #include<cstdio> #include<iostr ...
随机推荐
- MySQL数据库引擎、事务隔离级别、锁
MySQL数据库引擎.事务隔离级别.锁 数据库引擎InnoDB和MyISAM有什么区别 大体区别为: MyISAM类型不支持事务处理等高级处理,而InnoDB类型支持.MyISAM类型的表强调的是性能 ...
- JAVA枚举操作(获取值,转map集合)
JAVA枚举相对来说比.NET的枚举功能强大,感觉就像是一种简化版的类对象,可以有构造方法,可以重载,可以继承接口等等,但不能继承类,JAVA枚举在实际开发中应用相当频繁,以下几个封装方法在实际开发中 ...
- Jenkins服务器维护
Jenkins服务器维护 以下是一些基本的活动,一些是对 Jenkins 服务器维护的最佳实践 URL选项 在 Jenkins 实例 URL 有以下命令将开展对Jenkins实例的相关动作. http ...
- 通过扩展方法简化UnityAPI调用
通过扩展方法简化UnityAPI调用 扩展方法unity apiapi简化 通过扩展方法简化UnityAPI调用 能省一秒是一秒,时间就是金钱,没人愿意把时间花在冗长的coding上
- jmeter控制器(一)
简单控制器: 也就是最简单的控制器,里面没有任何内容的,如下图所示: 当我设置线程为循环10次时,运行简单控制器及下边的注册,设置如下图: 通过查看结果数得知,注册只成功了一次 ,再注册时出现邮箱已存 ...
- shell中与运算 cut切分行 if while综合在一起的一个例子
前言: 公司要统计 treasury库hive表磁盘空间,写了个脚本,如下: 查询hive仓库表占用hdfs文件大小: hadoop fs -du -h /user/hive/warehouse/t ...
- mysql读写分离配置(整理)
mysql读写分离配置 环境:centos7.2 mysql5.7 场景描述: 数据库Master主服务器:192.168.206.100 数据库Slave从服务器:192.168.206.200 M ...
- CHAPTER 25 The Greatest Show on Earth 第25章 地球上最壮观的演出
CHAPTER 25 The Greatest Show on Earth 第25章 地球上最壮观的演出 Go for a walk in the countryside and you will f ...
- SDN学习笔记
SDN 什么是SDN SDN是一种框架和思想,核心诉求是通过软件控制网络,实现业务的自动化部署,为方便软件来控制网络,希望控制面和转发面是分离的. 例如,传统的交换机内部,由交换机负责具体的网络流量往 ...
- go 运行项目
此时运行项目,不能像之前简单的使用go run main.go,因为包main包含main.go和router.go的文件,因此需要运行go run *.go命令编译运行.如果是最终编译二进制项目,则 ...