BZOJ3243 NOI2013向量内积(随机化)
考虑奇技淫巧。
首先是k=2。对向量维护一个前缀和,每次将当前向量与前缀和点乘。如果点乘结果不等于i-1&1,说明当前向量至少和之前的某个向量的数量积是2的倍数,暴力找就可以了。当然等于i-1&1也不一定就不存在,这本质上还是个随机算法,于是先random_shuffle一下。
k=3时,注意到12≡22≡1(mod 3),于是维护一个平方前缀和。具体的化一下式子就可以得出。
调了半天才发现bzoj题面上的数据范围锅了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<ctime>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define D 110
int n,d,k,a[N][D],b[D],c[D][D],id[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3243.in","r",stdin);
freopen("bzoj3243.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),d=read(),k=read();
for (int i=;i<=n;i++)
for (int j=;j<=d;j++)
a[i][j]=read()%k;
for (int i=;i<=n;i++) id[i]=i;
srand(time());
random_shuffle(id+,id+n+);
if (k==)
{
for (int i=;i<=d;i++) b[i]=a[id[]][i];
for (int i=;i<=n;i++)
{
int tot=;
for (int j=;j<=d;j++)
tot+=a[id[i]][j]&b[j];
if ((tot&)!=(i-&))
{
for (int j=;j<i;j++)
{
int tot=;
for (int k=;k<=d;k++) tot+=a[id[i]][k]&a[id[j]][k];
if (tot%==) {cout<<min(id[i],id[j])<<' '<<max(id[i],id[j])<<endl;return ;}
}
}
for (int j=;j<=d;j++)
b[j]=b[j]+a[id[i]][j]&;
}
}
else
{
for (int i=;i<=d;i++)
for (int j=;j<=d;j++)
c[i][j]=a[id[]][i]*a[id[]][j]%;
for (int i=;i<=n;i++)
{
int tot=;
for (int j=;j<=d;j++)
for (int k=;k<=d;k++)
tot+=a[id[i]][j]*a[id[i]][k]*c[j][k];
if (tot%!=(i-)%)
{
for (int j=;j<i;j++)
{
int tot=;
for (int k=;k<=d;k++)
for (int l=;l<=d;l++)
tot+=a[id[i]][k]*a[id[i]][l]*a[id[j]][k]*a[id[j]][l];
if (tot%==) {cout<<min(id[i],id[j])<<' '<<max(id[i],id[j])<<endl;return ;}
}
}
for (int j=;j<=d;j++)
for (int k=;k<=d;k++)
c[j][k]=(c[j][k]+a[id[i]][j]*a[id[i]][k])%;
}
}
cout<<-<<' '<<-;
return ;
}
BZOJ3243 NOI2013向量内积(随机化)的更多相关文章
- 【BZOJ-3243】向量内积 随机化 + 矩阵
3243: [Noi2013]向量内积 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1249 Solved: ...
- BZOJ3243 [Noi2013]向量内积 【乱搞】
题目链接 BZOJ3243 题解 模数只有\(2\)或\(3\),可以大力讨论 如果模数为\(2\),乘积结果只有\(1\)或\(0\) 如果一个向量和前面所有向量乘积都为\(1\),那么其和前面向量 ...
- 【fake题解】[NOI2013]向量内积
[fake题解][NOI2013]向量内积 做法1 大暴力.哪里不会T哪里. 做法2 所有数都%=k不影响结果.(废话 k的取值只有2和3,所以肯定是要分类讨论的.k=2肯定简单些啦. k=2 出现的 ...
- [Noi2013]向量内积
来自FallDream的博客,未经允许,请勿转载,谢谢. 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: $\sum_{i=1 ...
- P1224 [NOI2013]向量内积
传送门 发现这个内积和矩乘有点像,考虑构造一个 $n$ 行 $m$ 列的矩阵 $A$,每一行都是一个题目给定的 $m$ 维向量 设 $B=AA^T$ ,其中 $A^T$ 为 $A$ 的转置矩阵,那么对 ...
- luogu P1224 [NOI2013]向量内积
传送门 挺有意思的一道题 暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分 然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向 ...
- BZOJ3243/UOJ121 [Noi2013]向量内积
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- UOJ#121. 【NOI2013】向量内积 随机化算法,矩阵
原文链接www.cnblogs.com/zhouzhendong/UOJ121.html 前言 完蛋了我越来越菜了贺题都不会了. 题解 $O(n ^ 2 d) $ 暴力送 60 分. Bitset 优 ...
- 洛谷 P1224 - [NOI2013] 向量内积(随机化)
洛谷题面传送门 一道很神的随机化. 首先由于我们要求向量点乘 \(\bmod k\) 的值,因此我们可以将所有 \(x_{i,j}\) 都模上 \(k\),显然该操作不影响结果正确性. 注意到这里的 ...
随机推荐
- 稳重商务风格教师求职简历免费word模板
30款稳重商务风格教师求职简历免费word模板,也可用于其他专业和职业,个人免费简历模板,个人简历表免费,个人简历表格. 声明:该简历模板仅用于个人欣赏使用,请勿用于商业用途,谢谢. 下载地址:百度网 ...
- 阿里云centos7.4安装并部署svn1.10.0版本(配置多仓库,加入开机自启动)
如何安装最新版本 1.10.0: 如果已安装旧版本,先卸载 yum remove subversion* 查看当前可安装的版本 yum list | grep subversion 可以去官网下载安装 ...
- MOD 模除运算符
用于奇数和偶数的校验,星期几的计算,以及其它专门的计算.
- 用Unity的UGUI实现简单摇杆
1.在Canvas下新建一个空对象作为我们的摇杆,命名为Joystick. 摇杆由背景和杆两部分组成,所以在Joystick下新建一个Image作为摇杆的背景,命名为BG. 在BG下新建一个Image ...
- spring cloud 入门系列:总结
从我第一次接触Spring Cloud到现在已经有3个多月了,当时是在博客园里面注册了账号,并且看到很多文章都在谈论微服务,因此我就去了解了下,最终决定开始学习Spring Cloud.我在一款阅读A ...
- 【Docker】第四篇 Docker仓库管理
一.仓库概述 仓库(Repository):Docker仓库主要用于镜像的存储,它是镜像分发.部署的关键.仓库分为公共仓库和私有仓库. 注册服务器(Registry)和仓库区别:注册服务器上往往存放着 ...
- Openstack逻辑架构
一. Keystone -身份认证管理 提供了认证和授权的服务,openstack不同的组件通信都要经过授权,确保正确的用户和服务是经过认证的.并且它集成了大量的认证机制,比如用户名/密码和令牌/基 ...
- bc命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/lovevivi/p/4359296.html 最近经常要在linux下做一些进制转换,看到了可以使用bc命令,如下: ...
- MegaCli64/MegaCli命令详解
基础命令学习目录首页 MegaCli64 -LDInfo -Lall -aALL这个命令能看到RAID的状态MegaCli64 -LDSetProp ForcedWB -L0 -a0MegaCli64 ...
- 通过NPM快速发布你的NodeJS模块(组件包)
1.更新 NPM - [ npm install -g npm | 该步骤可选:最好使用新版本] 楼主当前版本号 2.6.1 ,如果更新报错,可以尝试 国内淘宝镜像 $ npm -v 2.6.1 // ...