这道题目的数据卡得好厉害。

题目明显是考察线段树延迟标记的,但是因为要考虑到p的值,这种延迟是有条件的:在该节点下所有的数据对于p都应该位于p的同一侧。要么都比p大,要么都比p小。

开始的时候我用一个flag来标记节点下面的值是否相同,这个想法其实不对,在最恶劣的情况下,这种方式几乎会直接退化到单点更新的程度,而且随着数据的输入,算法的效率会越来越低,因为整个树从上到下都是在一次性使用,没办法维护。

但是我还是提交了一下,没有任何悬念的TLE。

我又开始正常的思路,不再考虑一个节点下面的值是否相同,而是去想这些值是否在p的同一侧。想了一下,这样的话,我们只需要知道节点下面的最小值和最大值是不是在p的同一侧就行了,而维护最大值最小值之类的事简直是线段树最擅长的了。代码写好后提交,还是TLE。

这我就有点儿郁闷了,这种方法确实在很高程度上实现了数据的成段更新。我的建树和查找是完全相同的操作,在两个地方不太可能有什么优化的空间,能优化的地方只有更新操作。不过我实在想不来该怎么优化。

我去看了下别人的题解,发现博主用跟我同样地思路过了,不过过得很勉强,在G++下TLE,在C++下AC。我看了下他的代码,相对于我的代码来说,做了两个地方的优化,一个是线段树向下分发的时候加了一个if(a[t].dam)的操作,这个操作能够提高的效率微乎其微。另一个是减少了一个判断操作,这个地方我觉得能提高一些效率。

提交C++928msAC。

#include<stdio.h>
#include<string.h>
#define N 200005
struct node
{
int x,y;
int dam;
int min,max;
}a[N*3];
int b[N];
int m,n,p;
int Max(int x,int y)
{
if(x>y)
return x;
else
return y;
}
int Min(int x,int y)
{
if(x<y)
return x;
else
return y;
}
void CreatTree(int t,int x,int y)
{
a[t].x=x;
a[t].y=y;
a[t].dam=0;
a[t].max=0;
a[t].min=0;
if(x==y)
return ;
int temp=t*2;
int mid=(x+y)/2;
CreatTree(temp,x,mid);
CreatTree(temp+1,mid+1,y);
return ;
}
void InsertTree(int t,int x,int y,int k)
{
if(a[t].x==x&&a[t].y==y)
{
if(a[t].min>=p)
{
a[t].dam+=2*k;
a[t].max+=2*k;
a[t].min+=2*k;
return ;
}
else if(a[t].max<p)
{
a[t].dam+=k;
a[t].min+=k;
a[t].max+=k;
return ;
}
}
int temp=t*2;
int mid=(a[t].x+a[t].y)/2;
if(a[t].dam>0)
{
a[temp].dam+=a[t].dam;
a[temp+1].dam+=a[t].dam;
a[temp].min+=a[t].dam;
a[temp+1].min+=a[t].dam;
a[temp].max+=a[t].dam;
a[temp+1].max+=a[t].dam;
a[t].dam=0;
}
if(y<=mid)
InsertTree(temp,x,y,k);
else if(x>mid)
InsertTree(temp+1,x,y,k);
else
{
InsertTree(temp,x,mid,k);
InsertTree(temp+1,mid+1,y,k);
}
a[t].max=Max(a[temp].max,a[temp+1].max);
a[t].min=Min(a[temp].min,a[temp+1].min);
return ;
}
void FindTree(int t,int x,int y)
{
if(a[t].x==a[t].y)
{
b[a[t].x]=a[t].dam;
//printf("%d %d %d %d %d\n",a[t].x,a[t].y,a[t].dam,a[t].max,a[t].min);
return ;
}
int temp=t*2;
int mid=(a[t].x+a[t].y)/2;
a[temp].dam+=a[t].dam;
a[temp+1].dam+=a[t].dam;
a[t].dam=0;
FindTree(temp,x,mid);
FindTree(temp+1,mid+1,y);
//printf("%d %d %d %d %d\n",a[t].x,a[t].y,a[t].dam,a[t].max,a[t].min);
return ;
}
int main()
{
while(scanf("%d%d%d",&n,&m,&p)!=EOF)
{
CreatTree(1,1,n);
while(m--)
{
int x,y,k;
scanf("%d%d%d",&x,&y,&k);
InsertTree(1,x,y,k);
}
FindTree(1,1,n);
int i;
for(i=1;i<n;i++)
printf("%d ",b[i]);
printf("%d\n",b[i]);
}
return 0;
}

hdu 4107 Gangster(线段树,时间卡得很严)的更多相关文章

  1. hdu 4031 attack 线段树区间更新

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)Total Subm ...

  2. HDU 4578 Transformation --线段树,好题

    题意: 给一个序列,初始全为0,然后有4种操作: 1. 给区间[L,R]所有值+c 2.给区间[L,R]所有值乘c 3.设置区间[L,R]所有值为c 4.查询[L,R]的p次方和(1<=p< ...

  3. hdu 4288 离线线段树+间隔求和

    Coder Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  4. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  5. HDU 3308 (线段树区间合并)

    http://acm.hdu.edu.cn/showproblem.php?pid=3308 题意: 两个操作  : 1 修改 单点  a 处的值. 2 求出 区间[a,b]内的最长上升子序列. 做法 ...

  6. HDU 4107 Gangster(线段树 特殊懒惰标记)

    两种做法. 第一种:标记区间最大值和最小值,若区间最小值>=P,则本区间+2c,若区间最大值<P,则本区间+c.非常简单的区间更新. 最后发一点牢骚:最后query查一遍就行,我这个2B竟 ...

  7. HDU 4107 Gangster Segment Tree线段树

    这道题也有点新意,就是须要记录最小值段和最大值段,然后成段更新这个段,而不用没点去更新,达到提快速度的目的. 本题过的人非常少,由于大部分都超时了,我严格依照线段树的方法去写.一開始竟然也超时. 然后 ...

  8. HDU 4107 Gangster

    Gangster Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 4 ...

  9. HDU 5861 Road 线段树区间更新单点查询

    题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5861 Road Time Limit: 12000/6000 MS (Java/Othe ...

随机推荐

  1. 同一个IP不同端口号使用session失效

    背景 我有两个工程projectA.projectB,projectA放在TomcatA中,projectB放在TomcatB中,TomcatA.TomcatB在一台server上. 工程都映射的根路 ...

  2. 灵活的按键处理程序 FlexibleButton

    前言 正好工作中用到按键处理,需要处理单击.长按等按键事件,然后就造了这么一个轮子,为了以后更方便地加入其它的项目中使用,遂将其开源到 GitHub 中. 后面发现 RT-Thread 软件包里也有一 ...

  3. 自定义JSP标签示例

    我们以一个例子来讲解如何自定义JSP标签,假如我们需要在页面中输出当前的时间,按照最简单的JSP脚本,需要在JSP里面写很多Java代码,那么如何来使用自定义标签实现这个功能呢? 首先,我们要先创建一 ...

  4. bzoj——2127: happiness

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 2570  Solved: 1242[Submit][Status][D ...

  5. .Net中的IO

    C#中的IO 本文环境为: Win 10 VS 2015 .net Framework 版本 4.0 File 类 File 类是一个工具类,可以用来判断文件是否存在和方便的创建文件, 读取.写入等操 ...

  6. 【SQL】181. Employees Earning More Than Their Managers

    The Employee table holds all employees including their managers. Every employee has an Id, and there ...

  7. 机器学习之路:python 网格搜索 并行搜索 GridSearchCV 模型检验方法

    git:https://github.com/linyi0604/MachineLearning 如何确定一个模型应该使用哪种参数? k折交叉验证: 将样本分成k份 每次取其中一份做测试数据 其他做训 ...

  8. [COGS2580]偏序 II

    [COGS2580]偏序 II 题目大意: \(n(n\le50000)\)个五元组,求五维偏序. 思路: CDQ分治套CDQ分治套CDQ分治套树状数组. 时间复杂度\(\mathcal O(n\lo ...

  9. 7.4 (java学习笔记)网络编程之TCP

    一.TCP 1.1 TCP(Transmission Control Protocol 传输控制协议),是一种面向连接的,安全的传输协议,但效率相比于UDP而言比较低. TCP传输时需要确保先建立连接 ...

  10. 【POJ】1835:宇航员【模拟】【三维行走】

    宇航员 Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 7228   Accepted: 3050 Description 问 ...