Dijkstra算法求最短路径(java)(转)
原文链接:Dijkstra算法求最短路径(java)
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式
用OPEN,CLOSE表的方式,其采用的是贪心法的算法策略,大概过程如下:
1.声明两个集合,open和close,open用于存储未遍历的节点,close用来存储已遍历的节点
2.初始阶段,将初始节点放入close,其他所有节点放入open
3.以初始节点为中心向外一层层遍历,获取离指定节点最近的子节点放入close并从新计算路径,直至close包含所有子节点
代码实例如下:
Node对象用于封装节点信息,包括名字和子节点
- public class Node {
- private String name;
- private Map<Node,Integer> child=new HashMap<Node,Integer>();
- public Node(String name){
- this.name=name;
- }
- public String getName() {
- return name;
- }
- public void setName(String name) {
- this.name = name;
- }
- public Map<Node, Integer> getChild() {
- return child;
- }
- public void setChild(Map<Node, Integer> child) {
- this.child = child;
- }
- }
MapBuilder用于初始化数据源,返回图的起始节点
- public class MapBuilder {
- public Node build(Set<Node> open, Set<Node> close){
- Node nodeA=new Node("A");
- Node nodeB=new Node("B");
- Node nodeC=new Node("C");
- Node nodeD=new Node("D");
- Node nodeE=new Node("E");
- Node nodeF=new Node("F");
- Node nodeG=new Node("G");
- Node nodeH=new Node("H");
- nodeA.getChild().put(nodeB, 1);
- nodeA.getChild().put(nodeC, 1);
- nodeA.getChild().put(nodeD, 4);
- nodeA.getChild().put(nodeG, 5);
- nodeA.getChild().put(nodeF, 2);
- nodeB.getChild().put(nodeA, 1);
- nodeB.getChild().put(nodeF, 2);
- nodeB.getChild().put(nodeH, 4);
- nodeC.getChild().put(nodeA, 1);
- nodeC.getChild().put(nodeG, 3);
- nodeD.getChild().put(nodeA, 4);
- nodeD.getChild().put(nodeE, 1);
- nodeE.getChild().put(nodeD, 1);
- nodeE.getChild().put(nodeF, 1);
- nodeF.getChild().put(nodeE, 1);
- nodeF.getChild().put(nodeB, 2);
- nodeF.getChild().put(nodeA, 2);
- nodeG.getChild().put(nodeC, 3);
- nodeG.getChild().put(nodeA, 5);
- nodeG.getChild().put(nodeH, 1);
- nodeH.getChild().put(nodeB, 4);
- nodeH.getChild().put(nodeG, 1);
- open.add(nodeB);
- open.add(nodeC);
- open.add(nodeD);
- open.add(nodeE);
- open.add(nodeF);
- open.add(nodeG);
- open.add(nodeH);
- close.add(nodeA);
- return nodeA;
- }
- }
图的结构如下图所示:
Dijkstra对象用于计算起始节点到所有其他节点的最短路径
- public class Dijkstra {
- Set<Node> open=new HashSet<Node>();
- Set<Node> close=new HashSet<Node>();
- Map<String,Integer> path=new HashMap<String,Integer>();//封装路径距离
- Map<String,String> pathInfo=new HashMap<String,String>();//封装路径信息
- public Node init(){
- //初始路径,因没有A->E这条路径,所以path(E)设置为Integer.MAX_VALUE
- path.put("B", 1);
- pathInfo.put("B", "A->B");
- path.put("C", 1);
- pathInfo.put("C", "A->C");
- path.put("D", 4);
- pathInfo.put("D", "A->D");
- path.put("E", Integer.MAX_VALUE);
- pathInfo.put("E", "A");
- path.put("F", 2);
- pathInfo.put("F", "A->F");
- path.put("G", 5);
- pathInfo.put("G", "A->G");
- path.put("H", Integer.MAX_VALUE);
- pathInfo.put("H", "A");
- //将初始节点放入close,其他节点放入open
- Node start=new MapBuilder().build(open,close);
- return start;
- }
- public void computePath(Node start){
- Node nearest=getShortestPath(start);//取距离start节点最近的子节点,放入close
- if(nearest==null){
- return;
- }
- close.add(nearest);
- open.remove(nearest);
- Map<Node,Integer> childs=nearest.getChild();
- for(Node child:childs.keySet()){
- if(open.contains(child)){//如果子节点在open中
- Integer newCompute=path.get(nearest.getName())+childs.get(child);
- if(path.get(child.getName())>newCompute){//之前设置的距离大于新计算出来的距离
- path.put(child.getName(), newCompute);
- pathInfo.put(child.getName(), pathInfo.get(nearest.getName())+"->"+child.getName());
- }
- }
- }
- computePath(start);//重复执行自己,确保所有子节点被遍历
- computePath(nearest);//向外一层层递归,直至所有顶点被遍历
- }
- public void printPathInfo(){
- Set<Map.Entry<String, String>> pathInfos=pathInfo.entrySet();
- for(Map.Entry<String, String> pathInfo:pathInfos){
- System.out.println(pathInfo.getKey()+":"+pathInfo.getValue());
- }
- }
- /**
- * 获取与node最近的子节点
- */
- private Node getShortestPath(Node node){
- Node res=null;
- int minDis=Integer.MAX_VALUE;
- Map<Node,Integer> childs=node.getChild();
- for(Node child:childs.keySet()){
- if(open.contains(child)){
- int distance=childs.get(child);
- if(distance<minDis){
- minDis=distance;
- res=child;
- }
- }
- }
- return res;
- }
- }
Main用于测试Dijkstra对象
- public class Main {
- public static void main(String[] args) {
- Dijkstra test=new Dijkstra();
- Node start=test.init();
- test.computePath(start);
- test.printPathInfo();
- }
- }
打印输出如下:
D:A->D
E:A->F->E
F:A->F
G:A->C->G
B:A->B
C:A->C
H:A->B->H
参考链接:
Dijkstra算法求最短路径(java)(转)的更多相关文章
- Dijkstra算法求最短路径 Java实现
基本原理: 迪杰斯特拉算法是一种贪心算法. 首先建立一个集合,初始化只有一个顶点.每次将当前集合的所有顶点(初始只有一个顶点)看成一个整体,找到集合外与集合距离最近的顶点,将其加入集合并检查是否修改路 ...
- _DataStructure_C_Impl:Dijkstra算法求最短路径
// _DataStructure_C_Impl:Dijkstra #include<stdio.h> #include<stdlib.h> #include<strin ...
- 《算法导论》读书笔记之图论算法—Dijkstra 算法求最短路径
自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的 ...
- 通俗易懂理解——dijkstra算法求最短路径
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径.它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止 ###基本思想 通过Dij ...
- Java实现Dijkstra算法求最短路径
任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层 ...
- Dijkstra算法求最短路径
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h&g ...
- Dijkstra算法求单源最短路径
Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店 ...
- js迪杰斯特拉算法求最短路径
1.后台生成矩阵 名词解释和下图参考:https://blog.csdn.net/csdnxcn/article/details/80057574 double[,] arr = new double ...
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
随机推荐
- Extjs设置或获取cookie
设置cookie var myCookie = Ext.util.Cookie.set(‘YourCookieName’,'YourValue’); 读取cookie Ext.util.Cookie. ...
- web过滤器使用spring依赖注入
1.问题描述 在web项目中,使用filter过滤器十分常见,但是在过滤器中spring Bean即使在配置文件中配置了扫描filter对应的包,也无法正确注入spring 管理的Bean. 2.原因 ...
- 1015 Reversible Primes (20)(20 point(s))
problem A reversible prime in any number system is a prime whose "reverse" in that number ...
- android 安全退出 activity
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha 定义一个 活动 的基础类, 每次打开一个 活动,就记录下来. 退出时,关闭每一个 活动. ...
- [BZOJ3507][CQOI2014]通配符匹配(DP+Hash)
显然f[i][j]表示S匹配到第i个通配符,T匹配到第j个字符,是否可行. 一次一起转移两个通配符之间的所有字符,Hash判断. 稍微有点细节.常数极大卡时过排名倒数,可能是没自然溢出的原因. #in ...
- hdu 4547 LCA **
题意:在Windows下我们可以通过cmd运行DOS的部分功能,其中CD是一条很有意思的命令,通过CD操作,我们可以改变当前目录. 这里我们简化一下问题,假设只有一个根目录,CD操作也只有两种方式: ...
- Codeforces Round #296 (Div. 1) B. Clique Problem 贪心
B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Charles基本使用—http抓包、手机抓包、数据篡改
本文主要介绍如下内容: 1.Charles如何抓取HTTP报文 2.Charles如何抓取手机上的HTTP包 3.使用Charles篡改数据信息 一.Charles抓取HTTP包 1.Charles的 ...
- FT232H USB转串口,I2C,JTAG高速芯片
随着FT232H USB2.0高速芯片的发布,英商飞特蒂亚公司(FTDI)进一步巩固了其在USB接口集成电路产品的地位.此款多功能的单通道USB转UART/FIFO接口设备可通过EEPROM配置为各种 ...
- onInterceptTouchEvent 与 onTouchEvent 分析与MotionEvent在ViewGroup与View中的分发
onInterceptTouchEvent 与 onTouchEvent 分析与MotionEvent在ViewGroup与View中的分发 Notice:本文将紧接着 Android ...