Dijkstra算法求最短路径(java)(转)
原文链接:Dijkstra算法求最短路径(java)
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式
用OPEN,CLOSE表的方式,其采用的是贪心法的算法策略,大概过程如下:
1.声明两个集合,open和close,open用于存储未遍历的节点,close用来存储已遍历的节点
2.初始阶段,将初始节点放入close,其他所有节点放入open
3.以初始节点为中心向外一层层遍历,获取离指定节点最近的子节点放入close并从新计算路径,直至close包含所有子节点
代码实例如下:
Node对象用于封装节点信息,包括名字和子节点
- public class Node {
- private String name;
- private Map<Node,Integer> child=new HashMap<Node,Integer>();
- public Node(String name){
- this.name=name;
- }
- public String getName() {
- return name;
- }
- public void setName(String name) {
- this.name = name;
- }
- public Map<Node, Integer> getChild() {
- return child;
- }
- public void setChild(Map<Node, Integer> child) {
- this.child = child;
- }
- }
MapBuilder用于初始化数据源,返回图的起始节点
- public class MapBuilder {
- public Node build(Set<Node> open, Set<Node> close){
- Node nodeA=new Node("A");
- Node nodeB=new Node("B");
- Node nodeC=new Node("C");
- Node nodeD=new Node("D");
- Node nodeE=new Node("E");
- Node nodeF=new Node("F");
- Node nodeG=new Node("G");
- Node nodeH=new Node("H");
- nodeA.getChild().put(nodeB, 1);
- nodeA.getChild().put(nodeC, 1);
- nodeA.getChild().put(nodeD, 4);
- nodeA.getChild().put(nodeG, 5);
- nodeA.getChild().put(nodeF, 2);
- nodeB.getChild().put(nodeA, 1);
- nodeB.getChild().put(nodeF, 2);
- nodeB.getChild().put(nodeH, 4);
- nodeC.getChild().put(nodeA, 1);
- nodeC.getChild().put(nodeG, 3);
- nodeD.getChild().put(nodeA, 4);
- nodeD.getChild().put(nodeE, 1);
- nodeE.getChild().put(nodeD, 1);
- nodeE.getChild().put(nodeF, 1);
- nodeF.getChild().put(nodeE, 1);
- nodeF.getChild().put(nodeB, 2);
- nodeF.getChild().put(nodeA, 2);
- nodeG.getChild().put(nodeC, 3);
- nodeG.getChild().put(nodeA, 5);
- nodeG.getChild().put(nodeH, 1);
- nodeH.getChild().put(nodeB, 4);
- nodeH.getChild().put(nodeG, 1);
- open.add(nodeB);
- open.add(nodeC);
- open.add(nodeD);
- open.add(nodeE);
- open.add(nodeF);
- open.add(nodeG);
- open.add(nodeH);
- close.add(nodeA);
- return nodeA;
- }
- }
图的结构如下图所示:
Dijkstra对象用于计算起始节点到所有其他节点的最短路径
- public class Dijkstra {
- Set<Node> open=new HashSet<Node>();
- Set<Node> close=new HashSet<Node>();
- Map<String,Integer> path=new HashMap<String,Integer>();//封装路径距离
- Map<String,String> pathInfo=new HashMap<String,String>();//封装路径信息
- public Node init(){
- //初始路径,因没有A->E这条路径,所以path(E)设置为Integer.MAX_VALUE
- path.put("B", 1);
- pathInfo.put("B", "A->B");
- path.put("C", 1);
- pathInfo.put("C", "A->C");
- path.put("D", 4);
- pathInfo.put("D", "A->D");
- path.put("E", Integer.MAX_VALUE);
- pathInfo.put("E", "A");
- path.put("F", 2);
- pathInfo.put("F", "A->F");
- path.put("G", 5);
- pathInfo.put("G", "A->G");
- path.put("H", Integer.MAX_VALUE);
- pathInfo.put("H", "A");
- //将初始节点放入close,其他节点放入open
- Node start=new MapBuilder().build(open,close);
- return start;
- }
- public void computePath(Node start){
- Node nearest=getShortestPath(start);//取距离start节点最近的子节点,放入close
- if(nearest==null){
- return;
- }
- close.add(nearest);
- open.remove(nearest);
- Map<Node,Integer> childs=nearest.getChild();
- for(Node child:childs.keySet()){
- if(open.contains(child)){//如果子节点在open中
- Integer newCompute=path.get(nearest.getName())+childs.get(child);
- if(path.get(child.getName())>newCompute){//之前设置的距离大于新计算出来的距离
- path.put(child.getName(), newCompute);
- pathInfo.put(child.getName(), pathInfo.get(nearest.getName())+"->"+child.getName());
- }
- }
- }
- computePath(start);//重复执行自己,确保所有子节点被遍历
- computePath(nearest);//向外一层层递归,直至所有顶点被遍历
- }
- public void printPathInfo(){
- Set<Map.Entry<String, String>> pathInfos=pathInfo.entrySet();
- for(Map.Entry<String, String> pathInfo:pathInfos){
- System.out.println(pathInfo.getKey()+":"+pathInfo.getValue());
- }
- }
- /**
- * 获取与node最近的子节点
- */
- private Node getShortestPath(Node node){
- Node res=null;
- int minDis=Integer.MAX_VALUE;
- Map<Node,Integer> childs=node.getChild();
- for(Node child:childs.keySet()){
- if(open.contains(child)){
- int distance=childs.get(child);
- if(distance<minDis){
- minDis=distance;
- res=child;
- }
- }
- }
- return res;
- }
- }
Main用于测试Dijkstra对象
- public class Main {
- public static void main(String[] args) {
- Dijkstra test=new Dijkstra();
- Node start=test.init();
- test.computePath(start);
- test.printPathInfo();
- }
- }
打印输出如下:
D:A->D
E:A->F->E
F:A->F
G:A->C->G
B:A->B
C:A->C
H:A->B->H
参考链接:
Dijkstra算法求最短路径(java)(转)的更多相关文章
- Dijkstra算法求最短路径 Java实现
基本原理: 迪杰斯特拉算法是一种贪心算法. 首先建立一个集合,初始化只有一个顶点.每次将当前集合的所有顶点(初始只有一个顶点)看成一个整体,找到集合外与集合距离最近的顶点,将其加入集合并检查是否修改路 ...
- _DataStructure_C_Impl:Dijkstra算法求最短路径
// _DataStructure_C_Impl:Dijkstra #include<stdio.h> #include<stdlib.h> #include<strin ...
- 《算法导论》读书笔记之图论算法—Dijkstra 算法求最短路径
自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的 ...
- 通俗易懂理解——dijkstra算法求最短路径
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径.它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止 ###基本思想 通过Dij ...
- Java实现Dijkstra算法求最短路径
任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层 ...
- Dijkstra算法求最短路径
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h&g ...
- Dijkstra算法求单源最短路径
Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店 ...
- js迪杰斯特拉算法求最短路径
1.后台生成矩阵 名词解释和下图参考:https://blog.csdn.net/csdnxcn/article/details/80057574 double[,] arr = new double ...
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
随机推荐
- JAVAEE——宜立方商城12:购物车实现、订单确认页面展示
1. 学习计划 第十二天: 1.购物车实现 2.订单确认页面展示 2. 购物车的实现 2.1. 功能分析 1.购物车是一个独立的表现层工程. 2.添加购物车不要求登录.可以指定购买商品的数量. 3.展 ...
- OpenGL笔记<第一章> 构建 GLSL class
恭喜,我们终于很扎实地完成了第一章——glsl 入门 不幸的是,it's not the basic of GLSL shader ,我们下一节开篇,basic of GLSL shader 在下一章 ...
- django项目添加新的app
- ASP.net 简单分页的实现
在自己的项目中有一个文章的管理页面需要用到分页, 这种分页方法是在黑马的一个视频中看到的,便用在了自己的项目中. 但是使用控件实在是太丑,虽然我写的也丑....... gridview 控件提供的分页 ...
- 谁是最快的Go Web框架
根据Julien Schmidt测试框架中测试到的go web框架,在加上lion,fasthttp,一共测试了下面的web框架. default http macaron go-json-rest ...
- 【洛谷】3469:[POI2008]BLO-Blockade【割点统计size】
P3469 [POI2008]BLO-Blockade 题意翻译 在Byteotia有n个城镇. 一些城镇之间由无向边连接. 在城镇外没有十字路口,尽管可能有桥,隧道或者高架公路(反正不考虑这些).每 ...
- bzoj 1069
最开始想到的是枚举3个点,另一个点用卡壳的思想,但实际上可以只枚举两个点(对角线上的两个点),其余两个点用卡壳. /****************************************** ...
- Three.js 类的粗略总结和实现
类 1.Cameras 照相机,包括很多种类型的摄像机类,包括正交类型和投影类型的摄像机 2.Core 核心对象 3.Lights 光照,包括点光,环境光,镜面光等等 4.Loaders 专门用来加载 ...
- 在Hexo中渲染MathJax数学公式
最近学机器学习涉及很多的数学公式,公式如果用截图显示,会比较low而且不方便.因此需要对Hexo做些配置,支持公式渲染.同时文末整理了各种公式的书写心得,比如矩阵.大小括号.手动编号.上下角标和多行对 ...
- URAL 1881 Long problem statement
1881. Long problem statement Time limit: 0.5 secondMemory limit: 64 MB While Fedya was writing the s ...