P1850 换教室

现在有一张图, 有 \(v <= 300\) 个节点

你需要从 \(c_{1}\) 到 \(c_{2}\) 到 \(c_{n} (n <= 2000)\)

现在你有 \(m\) 次机会把 \(c_{i}\) 换为 \(d_{i}\), 对于第 \(i\) 个, 成功的概率为 \(k_{i}\)

求走完整个路程的期望路径长度


错误日志: 作死赋值 \(double\) 用 \(memset\)


Solution

这是第一个有关期望的题呢

本题为期望 \(dp\) , 从上一个状态转移过来(听dalao说还有一种是计算本状态对后面状态的贡献)

具体来说, 这个状态可以由以上 \(n\) 个状态得到, 每个状态权值为 \(w_{i}\), 其中第 \(i\) 个状态到此状态的概率为 \(k_{i}\), 那么有此状态可以表示为 $$dp[now] = \sum_{i = 1}^{n}{w_{i} * k_{i}}$$

本题状态为:

\(dp[i][j][0/1]\) 代表选到第 \(i\) 门课用掉 \(j\) 次机会, 此次申请或不申请的期望值

所有转移详细记录在注释中

答案自然在 \(\min_{i = 0}^{m}{\min(dp[n][i][0], dp[n][i][1])}\)

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int (i) = (x);(i) <= (y);(i)++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 4019, maxv = 319;
int num, numc, numv, nr;
int map[maxv][maxv];
int c[maxn], d[maxn];
double k[maxn];
double dp[maxn][maxn][2];
void floyd(){
REP(i, 1, numv)map[i][i] = 0;
REP(k, 1, numv)REP(i, 1, numv)REP(j, 1, numv){
map[i][j] = min(map[i][j], map[i][k] + map[k][j]);
}
}
int dist(int x, int y){return map[x][y];}
void init(){
REP(i, 1, numv)REP(j, 1, numv)map[i][j] = 1e9;
REP(i, 1, num)REP(j, 0, numc)dp[i][j][0] = dp[i][j][1] = 1e9;
}
int main(){
num = RD(), numc = RD(), numv = RD(), nr = RD();
init();
REP(i, 1, num)c[i] = RD();
REP(i, 1, num)d[i] = RD();
REP(i, 1, num)cin>>k[i];
REP(i, 1, nr){
int u = RD(), v = RD(), dis = RD();
map[u][v] = min(map[u][v], dis);
map[v][u] = map[u][v];
}
floyd();
dp[1][0][0] = dp[1][1][1] = 0;//选或不选都为起点
REP(i, 2, num){
int m = min(numc, i);
REP(j, 0, m){//可以不申请换教室, 从0开始
dp[i][j][0] = min(//本次不申请
dp[i - 1][j][0] + dist(c[i], c[i - 1]),//上次不申请
dp[i - 1][j][1]//上次申请
+ dist(c[i], d[i - 1]) * k[i - 1]//申请成功
+ dist(c[i], c[i - 1]) * (1 - k[i - 1])//申请失败
);
if(!j)continue;
dp[i][j][1] = min(//本次申请
dp[i - 1][j - 1][0]//上次不申请
+ dist(d[i], c[i - 1]) * k[i]//本次成功
+ dist(c[i], c[i - 1]) * (1 - k[i]), //本次失败
dp[i - 1][j - 1][1]//上次申请
+ dist(c[i], c[i - 1]) * (1 - k[i]) * (1 - k[i - 1])//0->0
+ dist(d[i], c[i - 1]) * k[i] * (1 - k[i - 1])//0->1
+ dist(c[i], d[i - 1]) * (1 - k[i]) * k[i - 1]//1->0
+ dist(d[i], d[i - 1]) * k[i] * k[i - 1]//1->1
);
}
}
double ans = 100000019;
REP(i, 0, numc){
ans = min(ans, dp[num][i][0]);
ans = min(ans, dp[num][i][1]);
}
printf("%.2lf\n", ans);
return 0;
}

P1850 换教室的更多相关文章

  1. bzoj4720 / P1850 换教室(Floyd+期望dp)

    P1850 换教室 先用Floyd把最短路处理一遍,接下来就是重头戏了 用 f [ i ][ j ][ 0/1 ] 表示在第 i 个时间段,发出了 j 次申请(注意不一定成功),并且在这个时间段是否( ...

  2. 洛谷 P1850 换教室 解题报告

    P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1≤i≤n) ...

  3. 洛谷——P1850 换教室

    P1850 换教室 有 2n 节课程安排在 nn 个时间段上.在第 i个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室 $c_i$​ 上课,而另一节课程在教室 $d_i$ ...

  4. 洛谷 P1850 换教室

    P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq ...

  5. Luogu P1850 换教室(期望dp)

    P1850 换教室 题意 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1\l ...

  6. P1850 换教室 期望dp

    P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq ...

  7. 洛谷P1850换教室

    题目传送门 理解题意:给定你一个学期的课程和教室数量以及教室之间的距离还有换教室成功的概率,求一个学期走的距离的期望最小值 题目是有够恶心的,属于那种一看就让人不想刷的题目...很明显的动规,但是那个 ...

  8. P1850 换教室[dp+期望]

    流下了不会概率的眼泪,由于不会概率,转移少写了点东西... 这个dp很简单,就是一个普通的线性dp加点期望.(刚开始写这道题时信笔写下) \(dp[0/1][i][j]\)表示到第\(i\)个时间段时 ...

  9. 【DP】【期望】$P1850$换教室

    链接 题目描述 有 \(2n\) 节课程安排在$ n$ 个时间段上.在第 \(i\)(\(1 \leq i \leq n\))个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在 ...

随机推荐

  1. Daily Scrum 11.10

    今日完成任务: 1.加入更改头像功能 2.解决不发送激活邮件和重置密码邮件的问题 3.在服务器上部署网站 4.加入匿名提问功能 明日任务: 黎柱金 修改数据库用户表,实现用户积分管理功能 晏旭瑞 解决 ...

  2. “学霸系统”之NABC

    我们团队这次选择的是“学霸系统”客户端项目: 1.需求(need) 作为一款和网上教学问答系统具有相似功能的手机客户端,具体的功能已给出要求:用户管理.搜索.分类.上传下载.用户贡献与交互等功能. ( ...

  3. 20172321 2017-2018-2《Java程序设计》第三周学习总结

    20172321 2017-2018-2<Java程序设计>第三周学习总结 教材学习内容总结 第三章要点: 要点1 :String类.Random类.Math类和枚举型,这几个是很有用的并 ...

  4. 除了C语言,C++······竟然还有Z语言?

    只能说自己见识短,头一次听说Z语言.先普及一下吧: Z语言是由牛津大学程序设计研究小组开发的一种形式语言,它是一种以一阶谓词演算为主要理论基础的规约语言,是一种功能性语言.Z语言是将事物的状态和行为用 ...

  5. GIT的使用及心得

    先给大家个很棒的GIT使用教程链接http://blog.jobbole.com/78960/ 这个链接是我在学习使用GIT时看的教程博客,分享给大家,里面还有介绍SVN与GIT的区别 GITHUB上 ...

  6. mysubmail 短信报警

    https://www.mysubmail.com/chs/documents/developer/YPWD84   文本文档  官网:www.mysubmail.com 操作流程:快速接入短信 AP ...

  7. 蜗牛慢慢爬 LeetCode 11. Container With Most Water [Difficulty: Medium]

    题目 Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai ...

  8. CentOS下Neo4j安装教程

    本文记录一下在CentOS 6.7上,安装neo4j图数据库,本文安装的版本为neo4j-community-2.3.9-unix.tar.gz. 下载Neo4j安装包 使用wget命令获取Neo4j ...

  9. mysql-master-ha 实现mysql master的高可用。

    常用的mysql 高可用有下面几种方案: 名称 原理 特点 mysqlmha Perl脚本对mysql master做心跳,master down了以后,选举new master   ,是要改代理层的 ...

  10. mysql中enum类型

    ENUM类型 ENUM 是一个字符串对象,其值通常选自一个允许值列表中,该列表在表创建时的列规格说明中被明确地列举. 在下列某些情况下,值也可以是空串("") 或 NULL: 如果 ...