P1850 换教室
P1850 换教室
现在有一张图, 有 \(v <= 300\) 个节点
你需要从 \(c_{1}\) 到 \(c_{2}\) 到 \(c_{n} (n <= 2000)\)
现在你有 \(m\) 次机会把 \(c_{i}\) 换为 \(d_{i}\), 对于第 \(i\) 个, 成功的概率为 \(k_{i}\)
求走完整个路程的期望路径长度
错误日志: 作死赋值 \(double\) 用 \(memset\)
Solution
这是第一个有关期望的题呢
本题为期望 \(dp\) , 从上一个状态转移过来(听dalao说还有一种是计算本状态对后面状态的贡献)
具体来说, 这个状态可以由以上 \(n\) 个状态得到, 每个状态权值为 \(w_{i}\), 其中第 \(i\) 个状态到此状态的概率为 \(k_{i}\), 那么有此状态可以表示为 $$dp[now] = \sum_{i = 1}^{n}{w_{i} * k_{i}}$$
本题状态为:
\(dp[i][j][0/1]\) 代表选到第 \(i\) 门课用掉 \(j\) 次机会, 此次申请或不申请的期望值
所有转移详细记录在注释中
答案自然在 \(\min_{i = 0}^{m}{\min(dp[n][i][0], dp[n][i][1])}\)
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int (i) = (x);(i) <= (y);(i)++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 4019, maxv = 319;
int num, numc, numv, nr;
int map[maxv][maxv];
int c[maxn], d[maxn];
double k[maxn];
double dp[maxn][maxn][2];
void floyd(){
REP(i, 1, numv)map[i][i] = 0;
REP(k, 1, numv)REP(i, 1, numv)REP(j, 1, numv){
map[i][j] = min(map[i][j], map[i][k] + map[k][j]);
}
}
int dist(int x, int y){return map[x][y];}
void init(){
REP(i, 1, numv)REP(j, 1, numv)map[i][j] = 1e9;
REP(i, 1, num)REP(j, 0, numc)dp[i][j][0] = dp[i][j][1] = 1e9;
}
int main(){
num = RD(), numc = RD(), numv = RD(), nr = RD();
init();
REP(i, 1, num)c[i] = RD();
REP(i, 1, num)d[i] = RD();
REP(i, 1, num)cin>>k[i];
REP(i, 1, nr){
int u = RD(), v = RD(), dis = RD();
map[u][v] = min(map[u][v], dis);
map[v][u] = map[u][v];
}
floyd();
dp[1][0][0] = dp[1][1][1] = 0;//选或不选都为起点
REP(i, 2, num){
int m = min(numc, i);
REP(j, 0, m){//可以不申请换教室, 从0开始
dp[i][j][0] = min(//本次不申请
dp[i - 1][j][0] + dist(c[i], c[i - 1]),//上次不申请
dp[i - 1][j][1]//上次申请
+ dist(c[i], d[i - 1]) * k[i - 1]//申请成功
+ dist(c[i], c[i - 1]) * (1 - k[i - 1])//申请失败
);
if(!j)continue;
dp[i][j][1] = min(//本次申请
dp[i - 1][j - 1][0]//上次不申请
+ dist(d[i], c[i - 1]) * k[i]//本次成功
+ dist(c[i], c[i - 1]) * (1 - k[i]), //本次失败
dp[i - 1][j - 1][1]//上次申请
+ dist(c[i], c[i - 1]) * (1 - k[i]) * (1 - k[i - 1])//0->0
+ dist(d[i], c[i - 1]) * k[i] * (1 - k[i - 1])//0->1
+ dist(c[i], d[i - 1]) * (1 - k[i]) * k[i - 1]//1->0
+ dist(d[i], d[i - 1]) * k[i] * k[i - 1]//1->1
);
}
}
double ans = 100000019;
REP(i, 0, numc){
ans = min(ans, dp[num][i][0]);
ans = min(ans, dp[num][i][1]);
}
printf("%.2lf\n", ans);
return 0;
}
P1850 换教室的更多相关文章
- bzoj4720 / P1850 换教室(Floyd+期望dp)
P1850 换教室 先用Floyd把最短路处理一遍,接下来就是重头戏了 用 f [ i ][ j ][ 0/1 ] 表示在第 i 个时间段,发出了 j 次申请(注意不一定成功),并且在这个时间段是否( ...
- 洛谷 P1850 换教室 解题报告
P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1≤i≤n) ...
- 洛谷——P1850 换教室
P1850 换教室 有 2n 节课程安排在 nn 个时间段上.在第 i个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室 $c_i$ 上课,而另一节课程在教室 $d_i$ ...
- 洛谷 P1850 换教室
P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq ...
- Luogu P1850 换教室(期望dp)
P1850 换教室 题意 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1\l ...
- P1850 换教室 期望dp
P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq ...
- 洛谷P1850换教室
题目传送门 理解题意:给定你一个学期的课程和教室数量以及教室之间的距离还有换教室成功的概率,求一个学期走的距离的期望最小值 题目是有够恶心的,属于那种一看就让人不想刷的题目...很明显的动规,但是那个 ...
- P1850 换教室[dp+期望]
流下了不会概率的眼泪,由于不会概率,转移少写了点东西... 这个dp很简单,就是一个普通的线性dp加点期望.(刚开始写这道题时信笔写下) \(dp[0/1][i][j]\)表示到第\(i\)个时间段时 ...
- 【DP】【期望】$P1850$换教室
链接 题目描述 有 \(2n\) 节课程安排在$ n$ 个时间段上.在第 \(i\)(\(1 \leq i \leq n\))个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在 ...
随机推荐
- 探路者-Beta发布中间产物
版本控制 版本控制报告:http://www.cnblogs.com/linym762/p/7881047.html git地址:https://git.coding.net/clairewyd/to ...
- YQCB冲刺第二周第一天
今天的任务为实现查看消费明细的功能. 遇到的问题是按类别显示. 站立会议为: 任务面板为:
- 手机端学习助手的说明书需求以及团队PM选择
1.产品的背景 课堂上知识容量大.密度高,学生不能立刻掌握所学知识点,同时,网上资料冗杂繁复,指向性不强,导致学生不能高效的学习,为了充分利用学生的课余时间,培养学生自学能力,辅助老师教学,我们小组希 ...
- 新的Calculator的规范作业
附加作业题目 第三次作业 mygithub:sonnypp 这是开学来第一次写随笔,这一次的作业是对上一次作业的修改,对于上一次作业,在学长老师的帮助下,我重新修改了下代码,将.h文件分成了一个Sca ...
- asp.net 错误24
错误 24 “xxx.Web.xxx.xxx”不包含“xxName”的定义,并且找不到可接受类型为“xxx.Web.xxxr.xxx”的第一个参数的扩展方法“xxxName”(是否缺少 using 指 ...
- ACM Shenyang Onsite 2016 题目
A. Thickest Burger 1000ms 262144K ACM ICPC is launching a thick burger. The thickness (or the heig ...
- yii2微博第三方登录
原作者:杜文建 原博客:http://www.cnblogs.com/dwj97/p/6530568.html yii2微博第三方登录 微博登录是最常用的第三方账号登录之一.由于其网站用户量大,可 ...
- ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )
组合数并不陌生(´・ω・`) 我们都学过组合数 会求组合数吗 一般我们用杨辉三角性质 杨辉三角上的每一个数字都等于它的左上方和右上方的和(除了边界) 第n行,第m个就是,就是C(n, m) (从0开始 ...
- sklearn-特征工程之特征选择
title: sklearn-特征工程之特征选择 date: 2016-11-25 22:49:24 categories: skearn tags: sklearn --- 抄袭/参考资料 使用sk ...
- 开源自己实现一个.net rpc框架 - Machete.Rpc
Machete.Rpc Machete.Rpc 是一个轻量级的Rpc(远程过程调用的)框架.底层代理使用了Emit提高了效率,底层通信采用DotNetty框架以提升通信的效率.目前正在逐步完善中. G ...