【HNOI2015】落忆枫音
题面
题解
求一个有特殊性质的有向图的生成树的个数。
首先,有向图的生成树的个数可以用矩阵树定理,能够得到\(40\)分。
但是如果它是一个\(\mathrm{DAG}\)就很好做,枚举每一个点的父亲,答案就是\(\prod d[i]\),\(d\)是每个点的入度
发现加了一条边之后只会形成一个环,设环上的点为\(a_1, a_2, \cdots, a_k\),那么形成的不合法的生成树有\(\frac{\prod_i d[i]}{\prod_{i = 1} ^ k d[a_i]}\)种。
于是答案就是\(\prod_i d[i] - \frac{\prod_i d[i]}{\prod_{i = 1} ^ k d[a_i]}\)
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(100010), maxm(200010), Mod(1000000007);
struct edge { int next, to; } e[maxm];
int head[maxn], e_num, n, m, vis[maxn], deg[maxn];
int sx, sy, ans = 1, dmul = 1, f[maxn];
inline void add_edge(int from, int to)
{
e[++e_num] = (edge) {head[from], to};
head[from] = e_num;
}
int fastpow(int x, int y)
{
int ans = 1;
for(; y; y >>= 1, x = 1ll * x * x % Mod)
if(y & 1) ans = 1ll * ans * x % Mod;
return ans;
}
void dfs(int x)
{
if(vis[x]) return; vis[x] = 1;
if(x == sy) return (void) (f[x] = 1ll * dmul
* fastpow(deg[x], Mod - 2) % Mod);
for(RG int i = head[x]; i; i = e[i].next)
dfs(e[i].to), f[x] = (f[x] + f[e[i].to]) % Mod;
f[x] = 1ll * f[x] * fastpow(deg[x], Mod - 2) % Mod;
}
int main()
{
n = read(), m = read(), sx = read(), sy = read();
for(RG int i = 1, a, b; i <= m; i++)
a = read(), b = read(), add_edge(b, a), ++deg[b];
++deg[1];
for(RG int i = 1; i <= n; i++)
{
if(i == sy) ans = 1ll * ans * (deg[i] + 1) % Mod;
else ans = 1ll * ans * deg[i] % Mod;
dmul = 1ll * dmul * deg[i] % Mod;
}
dfs(sx); ans = (ans - f[sx] + Mod) % Mod;
printf("%d\n", ans);
return 0;
}
【HNOI2015】落忆枫音的更多相关文章
- BZOJ 4011: [HNOI2015]落忆枫音( dp )
DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). ---------------------------------------- ...
- bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)
4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1125 Solved: 603[Submit][Statu ...
- [HNOI2015]落忆枫音 解题报告
[HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么 ...
- 4011: [HNOI2015]落忆枫音
4011: [HNOI2015]落忆枫音 链接 分析: 原来是一个DAG,考虑如何构造树形图,显然可以给每个点找一个父节点,所以树形图的个数就是$\prod\limits_u deg[u]$. 那么加 ...
- BZOJ4011: [HNOI2015]落忆枫音
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...
- [HNOI2015]落忆枫音
题目描述 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂......我们也不可能再 ...
- BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...
- BZOJ 4011: [HNOI2015]落忆枫音 计数 + 拓扑排序
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...
- [bzoj4011] [洛谷P3244] [HNOI2015] 落忆枫音
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂--我们也 ...
- luogu3244 bzoj4011 HNOI2015 落忆枫音
这道题目题面真长,废话一堆. 另外:这大概是我第一道独立做出来的HNOI2011年以后的题目了吧.像我水平这么差的都能做出来,dalao您不妨试一下自己想想? 题目大意:给一个DAG,其中1号点没有入 ...
随机推荐
- Vue2学习笔记:实例
1.实例 <!DOCTYPE html> <html> <head> <title></title> <script src=&quo ...
- 制作MacOS 系统启动盘
1,首先需要在一台有MacOS系统,在Apple stroe下载MacOS High Sierra安装程序: 2,准备一个至少8G容量的U盘: 3,打开 “应用程序 → 实用工具 → 磁盘工具”,将U ...
- 铁乐学Python_day08_文件操作
一.[基本的文件操作] 参数: 1.文件路径: 2.编码方式: 3.执行动作:(打开方式)只读,只写,追加,读写,写读! #1. 打开文件,得到文件句柄并赋值给一个变量 f = open('E:/Py ...
- 字典树(前缀树)-Java实现
字典树 字典树是一种树形结构,优点是利用字符串的公共前缀来节约存储空间.在这提供一个自己写的Java实现,非常简洁. 根节点没有字符路径.除根节点外,每一个节点都被一个字符路径找到. 从根节点到某一节 ...
- 原生js实现一个DIV的碰撞反弹运动
原生js实现一个DIV的碰撞反弹运动: 关键在于DIV的边界检测,进而改变运动方向,即可实现碰撞反弹效果. <!DOCTYPE html> <html lang="en& ...
- Oracle 关于WKT构造SDO_GEOMETRY的问题。
由于系统前端使用OpenLayers框架,后台数据库使用oracle spatial.大家知道Oracle spatial的SDO_GEOMETRY十分复杂,如果使用期java api ,那就坑爹了, ...
- P4906 小奔关闹钟
题目背景 由于今天是星期一,闹钟准时响了,由于小奔太困了,所以她想关停闹钟. 题目描述 可是,他的闹钟电路太复杂了,有很多个开关,每个开关都连着其他开关,其他开关又连着更多的开关,当且仅当所有开关都关 ...
- jquery的fadeTo方法的淡入淡出轮播图插件
由于对基于jquery的简单插件开发有了一定的了解,慢慢的也对基于jquery的插件开发有了兴趣,在上班结束之后就研究各种插件的思路逻辑.最近开发了一款基于jquery的fadeTo方法的轮播图插件, ...
- 7、Android---网络技术
玩手机不能上网是单机的时代 而且现在的流量也出了无限使用 几乎网络离不开人们的日常生活 7.1.WebView的用法 遇到一些特殊的请求 在程序中展示一些网页 加载和显示网页都是浏览器的任务 在不打开 ...
- 多线程之synchronized
Java并发编程:synchronized 虽然多线程编程极大地提高了效率,但是也会带来一定的隐患.比如说两个线程同时往一个数据库表中插入不重复的数据,就可能会导致数据库中插入了相同的数据.今天我们就 ...