基于tensorflow的简单鼠标键盘识别
import cv2 as cv
import tensorflow as tf
import numpy as np
import random ##以下为数据预处理,分类为cata,总共样本为cata*num_batch,总共图像为cata*num_img
cata=2 #需要分的类别
num_img=49 #图像个数
#该函数返回x与y,输入批量,产生cata*num_batch
def XANDY(num_batch): x_mouse=np.zeros([num_batch,500,500,1]) #保存鼠标图片矩阵
x_keyboard=np.zeros([num_batch,500,500,1]) #保存键盘图片矩阵
temp_mouse=random.sample(range(0,num_img),num_batch)
temp_keyboard=random.sample(range(0,num_img),num_batch)
for i in range(num_batch):
img_mouse1 = cv.imread('C:\\Users\\HHQ\\Desktop\\tangjun\\mouse\\data_mouse\\'+str(temp_mouse[i])+'.PNG', cv.IMREAD_GRAYSCALE)
img_mouse=cv.resize(img_mouse1,(500,500))
x_mouse[i,:,:,0]=img_mouse
img_keyboard1 = cv.imread('C:\\Users\\HHQ\\Desktop\\tangjun\\mouse\\data_keyboard\\'+str(temp_keyboard [i])+'.bmp', cv.IMREAD_GRAYSCALE)
img_keyboard = cv.resize(img_keyboard1, (500, 500))
x_keyboard [i,:,:,0] = img_keyboard xx=np.vstack((x_mouse,x_keyboard))
#表签中0表示鼠标,1表示键盘
y_0=np.zeros([num_batch,1])
y_1=np.ones([num_batch,1])
y_mouse=np.hstack((y_1,y_0))
y_keyboard=np.hstack((y_0,y_1))
yy_=np.vstack((y_mouse,y_keyboard)) #标签为二维数组,行保存样本数量,列保存分类
return xx,yy_ x=tf.placeholder(dtype=tf.float32,shape=[None ,500,500,1])
y_=tf.placeholder(dtype=tf.float32,shape=[None,cata])
#建立卷积
#第一层卷积
W_cov1=tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1),dtype=tf.float32)
B_cov1=tf.Variable(tf.truncated_normal([32],stddev=0.1),dtype=tf.float32)
A_cov1=tf.nn.relu(tf.nn.conv2d(x,W_cov1,strides=[1,1,1,1],padding='SAME')+B_cov1)
P_cov1=tf.nn.max_pool(A_cov1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='VALID')
#得到250*250*32维度的图像 #第二层卷积
W_cov2=tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1),dtype=tf.float32)
B_cov2=tf.Variable(tf.truncated_normal([64],stddev=0.1),dtype=tf.float32)
A_cov2=tf.nn.relu(tf.nn.conv2d(P_cov1,W_cov2,strides=[1,1,1,1],padding='SAME')+B_cov2)
# #第三层卷积
# W_cov3=tf.Variable(tf.truncated_normal()) # 建立全连接层,识别2物体
w=tf.Variable(tf.zeros([250*250*64,cata]),dtype= tf.float32)
b=tf.Variable(tf.zeros([cata]),dtype=tf.float32)
x_reshape=tf.reshape(A_cov2,[-1,250*250*64])
y=tf.matmul(x_reshape,w)+b #定义交叉熵,为了定义损失函数
loss=tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
# loss=-tf.reduce_mean(y_*tf.log(y))
#定义优化器
# train=tf.train.GradientDescentOptimizer(0.001).minimize(loss)
# train=tf.train.AdagradDAOptimizer(0.01).minimize(loss)
train=tf.train.AdamOptimizer(0.001).minimize(loss)
#定义预测准确率
predict1=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
predict=tf.reduce_mean(tf.cast(predict1,tf.float32)) init=tf.initialize_all_variables()
sess=tf.Session() sess.run(init)
x_pr,y_pr=XANDY(40) for i in range(30):
x_ba,y_ba=XANDY(15)
sess.run(train,feed_dict={x:x_ba,y_:y_ba})
accuracy=sess.run(predict, feed_dict={x: x_pr, y_: y_pr})
print('训练步骤: %d , 训练精度:%g' %(i,accuracy))
基于tensorflow的简单鼠标键盘识别的更多相关文章
- 基于TensorFlow的简单验证码识别
TensorFlow 可以用来实现验证码识别的过程,这里识别的验证码是图形验证码,首先用标注好的数据来训练一个模型,然后再用模型来实现这个验证码的识别. 生成验证码 首先生成验证码,这里使用 Pyth ...
- 基于tensorflow的MNIST手写识别
这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环.我也是! 这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟.在 ...
- 个基于TensorFlow的简单故事生成案例:带你了解LSTM
https://medium.com/towards-data-science/lstm-by-example-using-tensorflow-feb0c1968537 在深度学习中,循环神经网络( ...
- 深度学习(五)基于tensorflow实现简单卷积神经网络Lenet5
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/8954892.html 参考博客:https://blog.csdn.net/u01287127 ...
- 基于TensorFlow的手写中文识别(版本一)
具体效果实现: 第一次由于设备问题所以只训练了是一些个简单的字: 第二选了23个字训练了3000在字迹清晰下能够识别: 类似于默,鼠,鼓,这类文字也能识别,由于训练数据的问题,在测试的时候应尽量写在正 ...
- 基于tensorflow的简单线性回归模型
#!/usr/local/bin/python3 ##ljj [1] ##linear regression model import tensorflow as tf import matplotl ...
- 基于tensorflow实现mnist手写识别 (多层神经网络)
标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...
- C#简单鼠标键盘钩子KMHook
简介:由三个文件构成Pinvo.cs.KeyboardHook.cs.MouseHook.cs Pinvo.cs 是KeyboardHook与MouseHook需要的一些常量消息的定义 Keyboar ...
- 基于TensorFlow的MNIST手写数字识别-初级
一:MNIST数据集 下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...
随机推荐
- 【Tomcat】使用Eclipse绑定Tomcat 发布应用&&常见错误
创建时间:6.14 一.Eclipse绑定Tomcat 步骤1:获得服务器运行环境配置,Window/Preferences/Server/Runtime Environment 步骤2:添加服务器 ...
- 201671010456-张琼 实验十四 团队项目评审&课程学习总结
博文简要信息表 项目 内容 这个作业属于哪个课程 http://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/nwnu- ...
- 【笔试题】python文件操作
请说出下面代码结果及原因,很easy. 说明:test.txt文件不存在 with open('test.txt','w+') as f: f.write('34') f.seek(0) f.writ ...
- Kubernetes部署Spring Boot应用
SpringBoot项目 新建springboot项目 @RestController public class HelloWorldController { @RequestMapping(&quo ...
- AJAX异步更改数据库
前段时间做了一个小网站,里面有个小功能感觉挺好的,在此与大家分享一下,还请各位大神不要笑话小弟的无知. 此功能大概是这个样子的:点击下图中的类别名称,就可以对类别进行修改. 点击类别名称以后,原来的表 ...
- 可怕的Full GC (转自Hbase不睡觉书)
PS:之前做项目的时候,需要做个复杂的查询,大量的查询总是导致hbase集群奔溃,最后定位到时full GC的原因. 以下转自<Hbase不睡觉书>-------------------- ...
- WindowChrome
"chrome"一词在设计术语中是"框架"的意思,即浏览器的除了网页之外的部分. https://www.cnblogs.com/dino623/p/Cus ...
- 使用plv8+hashids生成短链接服务
有写过一个集成npm plv8 以及shortid生成短链接id服务,实际上我们可以集成触发器自动生成url对应的短链接地址,hashids也是一个不错的选择. 以下是一个别人写的一个博客实现可以参考 ...
- university-conda
1.建立环境 conda create -n djx python=3.7 2.激活 conda activate djx 3.退出 conda deactivate 4.查看 conda env l ...
- centos6中安装新版 Elasticsearch 7.x
es出新版了,虽然公司里还是用的老版本,但是本地还是有必要自己安装了玩玩 下载地址:https://www.elastic.co/cn/downloads/elasticsearch 那么一般来说还是 ...