Given a non-empty binary search tree and a target value, find the value in the BST that is closest to the target.

Note:

  • Given target value is a floating point.
  • You are guaranteed to have only one unique value in the BST that is closest to the target.

给一个非空二叉树和一个目标值,找到和目标值最接近的一个节点值。

利用二分搜索树的特点(左<根<右)来快速定位,由于根节点是中间值,在遍历时,如果目标值小于节点值,则找更小的值到左子树去找,反之去右子树找。

解法1:迭代

解法2:递归

Java:

public int closestValue(TreeNode root, double target) {
double min=Double.MAX_VALUE;
int result = root.val; while(root!=null){
if(target>root.val){ double diff = Math.abs(root.val-target);
if(diff<min){
min = Math.min(min, diff);
result = root.val;
}
root = root.right;
}else if(target<root.val){ double diff = Math.abs(root.val-target);
if(diff<min){
min = Math.min(min, diff);
result = root.val;
}
root = root.left;
}else{
return root.val;
}
} return result;
}  

Java:

public class Solution {
int goal;
double min = Double.MAX_VALUE; public int closestValue(TreeNode root, double target) {
helper(root, target);
return goal;
} public void helper(TreeNode root, double target){
if(root==null)
return; if(Math.abs(root.val - target) < min){
min = Math.abs(root.val-target);
goal = root.val;
} if(target < root.val){
helper(root.left, target);
}else{
helper(root.right, target);
}
}
} 

Java: Iteration

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int closestValue(TreeNode root, double target) {
if (root == null) return 0;
int min = root.val;
while (root != null) {
min = (Math.abs(root.val - target) < Math.abs(min - target) ? root.val : min);
root = (root.val < target) ? root.right : root.left;
}
return min;
}
}

Java: Recursion

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int closestValue(TreeNode root, double target) {
TreeNode child = target < root.val ? root.left : root.right;
if (child == null) {
return root.val;
}
int childClosest = closestValue(child, target);
return Math.abs(root.val - target) < Math.abs(childClosest - target) ? root.val : childClosest;
}
}

Python: Iteration, Time: O(h), Space: O(1)

# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None class Solution(object):
def closestValue(self, root, target):
"""
:type root: TreeNode
:type target: float
:rtype: int
"""
gap = float("inf")
closest = float("inf")
while root:
if abs(root.val - target) < gap:
gap = abs(root.val - target)
closest = root
if target == root.val:
break
elif target < root.val:
root = root.left
else:
root = root.right
return closest.val

C++: Iteration

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int closestValue(TreeNode* root, double target) {
double gap = numeric_limits<double>::max();
int closest = numeric_limits<int>::max(); while (root) {
if (abs(static_cast<double>(root->val) - target) < gap) {
gap = abs(root->val - target);
closest = root->val;
}
if (target == root->val) {
break;
} else if (target < root->val) {
root = root->left;
} else {
root = root->right;
}
}
return closest;
}
}; 

C++: Iteration

class Solution {
public:
int closestValue(TreeNode* root, double target) {
int res = root->val;
while (root) {
if (abs(res - target) >= abs(root->val - target)) {
res = root->val;
}
root = target < root->val ? root->left : root->right;
}
return res;
}
};

C++: Recursion

class Solution {
public:
int closestValue(TreeNode* root, double target) {
int a = root->val;
TreeNode *t = target < a ? root->left : root->right;
if (!t) return a;
int b = closestValue(t, target);
return abs(a - target) < abs(b - target) ? a : b;
}
};

C++: Recursion

class Solution {
public:
int closestValue(TreeNode* root, double target) {
int res = root->val;
if (target < root->val && root->left) {
int l = closestValue(root->left, target);
if (abs(res - target) >= abs(l - target)) res = l;
} else if (target > root->val && root->right) {
int r = closestValue(root->right, target);
if (abs(res - target) >= abs(r - target)) res = r;
}
return res;
}
};  

类似题目:

  

All LeetCode Questions List 题目汇总

[LeetCode] 270. Closest Binary Search Tree Value 最近的二叉搜索树的值的更多相关文章

  1. [LeetCode] 272. Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  2. [LeetCode] Trim a Binary Search Tree 修剪一棵二叉搜索树

    Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that a ...

  3. [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  4. Leetcode 270. Closest Binary Search Tree Value

    Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...

  5. [leetcode]270. Closest Binary Search Tree Value二叉搜索树中找target的最接近值

    Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...

  6. leetCode 95.Unique Binary Search Trees II (唯一二叉搜索树) 解题思路和方法

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  7. 109 Convert Sorted List to Binary Search Tree 有序链表转换二叉搜索树

    给定一个单元链表,元素按升序排序,将其转换为高度平衡的BST.对于这个问题,一个高度平衡的二叉树是指:其中每个节点的两个子树的深度相差不会超过 1 的二叉树.示例:给定的排序链表: [-10, -3, ...

  8. Leetcode109. Convert Sorted List to Binary Search Tree有序链表转换二叉搜索树

    给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定的有序链表: [-10 ...

  9. [LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

随机推荐

  1. 使用Arduino连接HC-SR04超声波距离传感器的方法

    距离传感器是机器人项目最有用的传感器之一. HC-SR04是一种便宜的超声波距离传感器,可以帮助您的机器人在房间周围导航.通过一些努力和一个额外的组件,它也可以用作测量设备.在这篇文章中,您将学习到通 ...

  2. Spring boot集成Swagger2,并配置多个扫描路径,添加swagger-ui-layer

    Spring boot集成Swagger,并配置多个扫描路径 1:认识Swagger Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 Web 服务.总体目 ...

  3. Alpha冲刺(10/10)——2019.5.3

    所属课程 软件工程1916|W(福州大学) 作业要求 Alpha冲刺(10/10)--2019.5.3 团队名称 待就业六人组 1.团队信息 团队名称:待就业六人组 团队描述:同舟共济扬帆起,乘风破浪 ...

  4. centos7中,mysql连接报错:1130 - Host ‘118.111.111.111’ is not allowed to connect to this MariaDB server

    客户端连接报错 这个问题是因为用户在数据库服务器中的mysql数据库中的user的表中没有权限. 解决步骤 1.连接服务器: mysql -u root -p 2.看当前所有数据库:show data ...

  5. Centos7.6安装docker-compose

    官网地址:https://docs.docker.com/compose/install/ 运行此命令以下载Docker Compose的当前稳定版本 sudo curl -L "https ...

  6. Dynamics 365 On-premises和Online 的不同

    1.新建账号的不同:on-premises(下文简称op)是和ad绑定的,所以必须先在ad中新建账号后才能在CRM中新建.而online是和Office365(下文简称O365)绑定的,所以需在O36 ...

  7. 用junit Test Suite来组合测试

    在测试过程中,有时可能想一次性运行所有的测试类,或是选择性的运行某些测试类.这样的话我们就可以用TestSuite来统一管理我们的测试类. 比如说我现在有三个测试类:junitTest4,TestCa ...

  8. ARDUIN人体检测模块

    http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/arduino-hc-sr501-motion-senso ...

  9. Tips on Probability Theory

    1.独立与不相关 随机变量X和Y相互独立,有:E(XY) = E(X)E(Y). 独立一定不相关,不相关不一定独立(高斯过程里二者等价) .对于均值为零的高斯随机变量,“独立”和“不相关”等价的. 独 ...

  10. 羊村的OI题解

    目录 喜羊羊与灰太狼--仓库管理 喜羊羊与灰太狼--破译密码 喜羊羊与灰太狼--烦恼的礼物 喜羊羊与灰太狼--仓库管理 传送门 水的一批,还让开o2了 就不写了 #include<iostrea ...