Given a non-empty binary search tree and a target value, find the value in the BST that is closest to the target.

Note:

  • Given target value is a floating point.
  • You are guaranteed to have only one unique value in the BST that is closest to the target.

给一个非空二叉树和一个目标值,找到和目标值最接近的一个节点值。

利用二分搜索树的特点(左<根<右)来快速定位,由于根节点是中间值,在遍历时,如果目标值小于节点值,则找更小的值到左子树去找,反之去右子树找。

解法1:迭代

解法2:递归

Java:

public int closestValue(TreeNode root, double target) {
double min=Double.MAX_VALUE;
int result = root.val; while(root!=null){
if(target>root.val){ double diff = Math.abs(root.val-target);
if(diff<min){
min = Math.min(min, diff);
result = root.val;
}
root = root.right;
}else if(target<root.val){ double diff = Math.abs(root.val-target);
if(diff<min){
min = Math.min(min, diff);
result = root.val;
}
root = root.left;
}else{
return root.val;
}
} return result;
}  

Java:

public class Solution {
int goal;
double min = Double.MAX_VALUE; public int closestValue(TreeNode root, double target) {
helper(root, target);
return goal;
} public void helper(TreeNode root, double target){
if(root==null)
return; if(Math.abs(root.val - target) < min){
min = Math.abs(root.val-target);
goal = root.val;
} if(target < root.val){
helper(root.left, target);
}else{
helper(root.right, target);
}
}
} 

Java: Iteration

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int closestValue(TreeNode root, double target) {
if (root == null) return 0;
int min = root.val;
while (root != null) {
min = (Math.abs(root.val - target) < Math.abs(min - target) ? root.val : min);
root = (root.val < target) ? root.right : root.left;
}
return min;
}
}

Java: Recursion

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int closestValue(TreeNode root, double target) {
TreeNode child = target < root.val ? root.left : root.right;
if (child == null) {
return root.val;
}
int childClosest = closestValue(child, target);
return Math.abs(root.val - target) < Math.abs(childClosest - target) ? root.val : childClosest;
}
}

Python: Iteration, Time: O(h), Space: O(1)

# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None class Solution(object):
def closestValue(self, root, target):
"""
:type root: TreeNode
:type target: float
:rtype: int
"""
gap = float("inf")
closest = float("inf")
while root:
if abs(root.val - target) < gap:
gap = abs(root.val - target)
closest = root
if target == root.val:
break
elif target < root.val:
root = root.left
else:
root = root.right
return closest.val

C++: Iteration

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int closestValue(TreeNode* root, double target) {
double gap = numeric_limits<double>::max();
int closest = numeric_limits<int>::max(); while (root) {
if (abs(static_cast<double>(root->val) - target) < gap) {
gap = abs(root->val - target);
closest = root->val;
}
if (target == root->val) {
break;
} else if (target < root->val) {
root = root->left;
} else {
root = root->right;
}
}
return closest;
}
}; 

C++: Iteration

class Solution {
public:
int closestValue(TreeNode* root, double target) {
int res = root->val;
while (root) {
if (abs(res - target) >= abs(root->val - target)) {
res = root->val;
}
root = target < root->val ? root->left : root->right;
}
return res;
}
};

C++: Recursion

class Solution {
public:
int closestValue(TreeNode* root, double target) {
int a = root->val;
TreeNode *t = target < a ? root->left : root->right;
if (!t) return a;
int b = closestValue(t, target);
return abs(a - target) < abs(b - target) ? a : b;
}
};

C++: Recursion

class Solution {
public:
int closestValue(TreeNode* root, double target) {
int res = root->val;
if (target < root->val && root->left) {
int l = closestValue(root->left, target);
if (abs(res - target) >= abs(l - target)) res = l;
} else if (target > root->val && root->right) {
int r = closestValue(root->right, target);
if (abs(res - target) >= abs(r - target)) res = r;
}
return res;
}
};  

类似题目:

  

All LeetCode Questions List 题目汇总

[LeetCode] 270. Closest Binary Search Tree Value 最近的二叉搜索树的值的更多相关文章

  1. [LeetCode] 272. Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  2. [LeetCode] Trim a Binary Search Tree 修剪一棵二叉搜索树

    Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that a ...

  3. [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  4. Leetcode 270. Closest Binary Search Tree Value

    Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...

  5. [leetcode]270. Closest Binary Search Tree Value二叉搜索树中找target的最接近值

    Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...

  6. leetCode 95.Unique Binary Search Trees II (唯一二叉搜索树) 解题思路和方法

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  7. 109 Convert Sorted List to Binary Search Tree 有序链表转换二叉搜索树

    给定一个单元链表,元素按升序排序,将其转换为高度平衡的BST.对于这个问题,一个高度平衡的二叉树是指:其中每个节点的两个子树的深度相差不会超过 1 的二叉树.示例:给定的排序链表: [-10, -3, ...

  8. Leetcode109. Convert Sorted List to Binary Search Tree有序链表转换二叉搜索树

    给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定的有序链表: [-10 ...

  9. [LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

随机推荐

  1. 使用SecureCRT操作linux系统时候的简单设置

    因为第一次访问一台虚拟机的时候会出现这样的情况;   底色为白色和乱码的情况 需要在选项----->会话选项中进行一些设置 用来解决乱码问题的这个设置为:

  2. git添加doc文件维护

    原文地址:https://www.cnblogs.com/yezuhui/p/6853271.html 说明: git 一般只能对纯文本文件进行版本控制,但是如果有其他中间转化软件的协助,就可以对任意 ...

  3. 【学习笔记】Kruskal 重构树

    1. 例题引入:BZOJ3551 用一道例题引入:BZOJ3551 题目大意:有 \(N\) 座山峰,每座山峰有他的高度 \(h_i\).有些山峰之间有双向道路相连,共 \(M\) 条路径,每条路径有 ...

  4. Git的基本使用方法(受益匪浅)

    git指令介绍,下面有详解指令可以先跳过直接看下面的详解 $ mkdir learngit     //创建一个learngit文件夹 $ cd learngit         //进入learng ...

  5. 用OKR提升员工的执行力

    很多管理者在公司管控的过程中常常出现一种乏力的感觉,觉得很多事情推进不下去,结果总是令人不满意.管理者总是会吐槽,“员工执行力差!”而此时大部分管理者会认为公司执行力差是员工能力和态度的问题. 事实上 ...

  6. windbg在加载模块时下断点

    假设我们希望在加载特定的dll时中断调试器,例如,我想启用一些SOS命令,而clr还没有加载,当您遇到程序中过早发生的异常,并且您不能依赖手动尝试在正确的时间中断时,这尤其有用.例如,在将调试器附加到 ...

  7. CF1237E 【Balanced Binary Search Trees】

    首先我们要注意到一个性质:由于根与右子树的根奇偶性相同,那么根的奇偶性与\(N\)相同 然后我们发现对于一个完美树,他的左右两个儿子都是完美树 也就是说,一颗完美树是由两棵完美树拼成的 注意到另一个性 ...

  8. tensorflow手写数字识别(有注释)

    import tensorflow as tf import numpy as np # const = tf.constant(2.0, name='const') # b = tf.placeho ...

  9. 54、Spark Streaming:DStream的transformation操作概览

    一. transformation操作概览 Transformation Meaning map 对传入的每个元素,返回一个新的元素 flatMap 对传入的每个元素,返回一个或多个元素 filter ...

  10. JDK源码解析---HashMap源码解析

    HashMap简介 HashMap是基于哈希表实现的,每一个元素是一个key-value对,其内部通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长. HashMap是非线程安全的,只是 ...