转载于:Pytorch中的仿射变换(affine_grid)

参考:详细解读Spatial Transformer Networks (STN)

假设我们有这么一张图片:

 

下面我们将通过分别通过手动编码和pytorch方式对该图片进行平移、旋转、转置、缩放等操作,这些操作的数学原理在本文中不会详细讲解。

实现载入图片(注意,下面的代码都是在 jupyter 中进行):

 from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt %matplotlib inline img_path = "图片文件路径"
img_torch = transforms.ToTensor()(Image.open(img_path)) plt.imshow(img_torch.numpy().transpose(1,2,0))
plt.show()

平移操作

普通方式

例如我们需要向右平移50px,向下平移100px。

 import numpy as np
import torch theta = np.array([
[1,0,50],
[0,1,100]
])
# 变换1:可以实现缩放/旋转,这里为 [[1,0],[0,1]] 保存图片不变
t1 = theta[:,[0,1]]
# 变换2:可以实现平移
t2 = theta[:,[2]] _, h, w = img_torch.size()
new_img_torch = torch.zeros_like(img_torch, dtype=torch.float)
for x in range(w):
for y in range(h):
pos = np.array([[x], [y]])
npos = t1@pos+t2
nx, ny = npos[0][0], npos[1][0]
if 0<=nx<w and 0<=ny<h:
new_img_torch[:,ny,nx] = img_torch[:,y,x]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()

图片变为:

图片平移-1

pytorch 方式

向右移动0.2,向下移动0.4:

 from torch.nn import functional as F

 theta = torch.tensor([
[1,0,-0.2],
[0,1,-0.4]
], dtype=torch.float)
grid = F.affine_grid(theta.unsqueeze(0), img_torch.unsqueeze(0).size())
output = F.grid_sample(img_torch.unsqueeze(0), grid)
new_img_torch = output[0]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()

得到的图片为:

 
图片平移-2

总结:

  • 要使用 pytorch 的平移操作,只需要两步:theta 的第三列为平移比例,向右为负,向下为负;

    • 创建 grid:grid = torch.nn.functional.affine_grid(theta, size),其实我们可以通过调节 size 设置所得到的图像的大小(相当于resize);
    • grid_sample 进行重采样:outputs = torch.nn.functional.grid_sample(inputs, grid, mode='bilinear')
  • theta 的第三列为平移比例,向右为负,向下为负;

我们通过设置 size 可以将图像resize:

 from torch.nn import functional as F

 theta = torch.tensor([
[1,0,-0.2],
[0,1,-0.4]
], dtype=torch.float)
# 修改size
N, C, W, H = img_torch.unsqueeze(0).size()
size = torch.Size((N, C, W//2, H//3))
grid = F.affine_grid(theta.unsqueeze(0), size)
output = F.grid_sample(img_torch.unsqueeze(0), grid)
new_img_torch = output[0]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()
修改size的效果

缩放操作

普通方式

放大1倍:

 import numpy as np
import torch theta = np.array([
[2,0,0],
[0,2,0]
])
t1 = theta[:,[0,1]]
t2 = theta[:,[2]] _, h, w = img_torch.size()
new_img_torch = torch.zeros_like(img_torch, dtype=torch.float)
for x in range(w):
for y in range(h):
pos = np.array([[x], [y]])
npos = t1@pos+t2
nx, ny = npos[0][0], npos[1][0]
if 0<=nx<w and 0<=ny<h:
new_img_torch[:,ny,nx] = img_torch[:,y,x]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()

结果为:

放大操作-1

由于没有使用插值算法,所以中间有很多部分是黑色的。

pytorch 方式

 from torch.nn import functional as F

 theta = torch.tensor([
[0.5, 0 , 0],
[0 , 0.5, 0]
], dtype=torch.float)
grid = F.affine_grid(theta.unsqueeze(0), img_torch.unsqueeze(0).size())
output = F.grid_sample(img_torch.unsqueeze(0), grid)
new_img_torch = output[0]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()

结果为:

放大操作-2

结论:可以看到,affine_grid 的放大操作是以图片中心为原点的。

旋转操作

普通操作

将图片旋转30度:

import numpy as np
import torch
import math angle = 30*math.pi/180
theta = np.array([
[math.cos(angle),math.sin(-angle),0],
[math.sin(angle),math.cos(angle) ,0]
])
t1 = theta[:,[0,1]]
t2 = theta[:,[2]] _, h, w = img_torch.size()
new_img_torch = torch.zeros_like(img_torch, dtype=torch.float)
for x in range(w):
for y in range(h):
pos = np.array([[x], [y]])
npos = t1@pos+t2
nx, ny = int(npos[0][0]), int(npos[1][0])
if 0<=nx<w and 0<=ny<h:
new_img_torch[:,ny,nx] = img_torch[:,y,x]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()

结果为:

旋转操作-1
 

pytorch 操作

from torch.nn import functional as F
import math angle = -30*math.pi/180
theta = torch.tensor([
[math.cos(angle),math.sin(-angle),0],
[math.sin(angle),math.cos(angle) ,0]
], dtype=torch.float)
grid = F.affine_grid(theta.unsqueeze(0), img_torch.unsqueeze(0).size())
output = F.grid_sample(img_torch.unsqueeze(0), grid)
new_img_torch = output[0]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()

结果为:

旋转操作-2

pytorch 以图片中心为原点进行旋转,并且在旋转过程中会发生图片缩放,如果选择角度变为 90°,图片为:

旋转 90° 结果
 

转置操作

普通操作

 import numpy as np
import torch theta = np.array([
[0,1,0],
[1,0,0]
])
t1 = theta[:,[0,1]]
t2 = theta[:,[2]] _, h, w = img_torch.size()
new_img_torch = torch.zeros_like(img_torch, dtype=torch.float)
for x in range(w):
for y in range(h):
pos = np.array([[x], [y]])
npos = t1@pos+t2
nx, ny = npos[0][0], npos[1][0]
if 0<=nx<w and 0<=ny<h:
new_img_torch[:,ny,nx] = img_torch[:,y,x]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()

结果为:

 
图片转置-1

pytorch 操作

我们可以通过size大小,保存图片不被压缩:

 from torch.nn import functional as F

 theta = torch.tensor([
[0, 1, 0],
[1, 0, 0]
], dtype=torch.float)
N, C, H, W = img_torch.unsqueeze(0).size()
grid = F.affine_grid(theta.unsqueeze(0), torch.Size((N, C, W, H)))
output = F.grid_sample(img_torch.unsqueeze(0), grid)
new_img_torch = output[0]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()

结果为:

图片转置-2

(转载)Pytorch中的仿射变换(affine_grid)的更多相关文章

  1. [转载]PyTorch中permute的用法

    [转载]PyTorch中permute的用法 来源:https://blog.csdn.net/york1996/article/details/81876886 permute(dims) 将ten ...

  2. [转载]Pytorch中nn.Linear module的理解

    [转载]Pytorch中nn.Linear module的理解 本文转载并援引全文纯粹是为了构建和分类自己的知识,方便自己未来的查找,没啥其他意思. 这个模块要实现的公式是:y=xAT+*b 来源:h ...

  3. 【转载】 Pytorch中的学习率调整lr_scheduler,ReduceLROnPlateau

    原文地址: https://blog.csdn.net/happyday_d/article/details/85267561 ------------------------------------ ...

  4. (原)CNN中的卷积、1x1卷积及在pytorch中的验证

    转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn ...

  5. 转pytorch中训练深度神经网络模型的关键知识点

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/articl ...

  6. pytorch中tensor数据和numpy数据转换中注意的一个问题

    转载自:(pytorch中tensor数据和numpy数据转换中注意的一个问题)[https://blog.csdn.net/nihate/article/details/82791277] 在pyt ...

  7. 详解Pytorch中的网络构造,模型save和load,.pth权重文件解析

    转载:https://zhuanlan.zhihu.com/p/53927068 https://blog.csdn.net/wangdongwei0/article/details/88956527 ...

  8. [转载]PyTorch上的contiguous

    [转载]PyTorch上的contiguous 来源:https://zhuanlan.zhihu.com/p/64551412 这篇文章写的非常好,我这里就不复制粘贴了,有兴趣的同学可以去看原文,我 ...

  9. [转载]Pytorch详解NLLLoss和CrossEntropyLoss

    [转载]Pytorch详解NLLLoss和CrossEntropyLoss 来源:https://blog.csdn.net/qq_22210253/article/details/85229988 ...

随机推荐

  1. asp.net中的参数传递:Context.Handler 的用法

    网上天天有人问怎么在webform页面之间传值,基本上来说,大家熟悉的是     (1)url字符串传值     (2)session传值     (3)直接读取server.transfer过来的页 ...

  2. 项目Beta冲刺 随笔集合

    课程: 软件工程1916|W(福州大学) 作业要求: 项目Beta冲刺 团队名称: 火鸡堂 作业目标: 尽力交付 火鸡堂 队员学号 队员姓名 博客地址 备注 221600111 彼术向 http:// ...

  3. test20191210 钟子谦

    100+40+0=140.暴力没写满-- 简单模拟 很久很久以前,有一个 \(1\sim n\) 的排列 \(a\),还有一个长度为 \(q\) 的,每个元素在 \(1\) 到 \(n\) 之间的序列 ...

  4. python 比较2个文件内容

    1. 通过使用md5字符串比较2个文件 import hashlib def get_file_md5(filename): '''可以比较两个文件的md5值,来比较文件内容.未使用''' md5 = ...

  5. Java检查异常、非检查异常、运行时异常、非运行时异常的区别

    Java把所有的非正常情况分为两种:异常(Exception)和错误(Error),它们都继承Throwable父类. Java的异常(Exception和Error)分为检查异常和非检查的异常. 其 ...

  6. Event 事件(最简单实用)

    public partial class Form1 : Form { /// <summary> /// 定义事件 /// </summary> public event E ...

  7. [Javascript] Private Variables with IIFEs

    An IIFE (immediately invoked function expression) is when a function is called immediately after it ...

  8. score indicator

    The strongest scorer applet is the strongest scorer specially designed for the players. No longer wo ...

  9. Boring counting HDU - 3518 (后缀数组)

    Boring counting \[ Time Limit: 1000 ms \quad Memory Limit: 32768 kB \] 题意 给出一个字符串,求出其中出现两次及以上的子串个数,要 ...

  10. Nginx 代理到Jetty 页面跳转端口改变问题

    Nginx安装 Windows下部署Nginx只需下载安装包,解压启动服务器即可.下载官网:http://nginx.org/en/download.html 操作Nginx首先进入安装文件夹: 查看 ...