题目链接


\(Description\)

求$$\sum_{i=1}n\sum_{j=1}i\frac{lcm(i,j)}{gcd(i,j)}$$

答案对\(10^9+7\)取模。

\(n<=10^9\)


\(Solution\)

以前做的反演题都是\(j\)枚举到\(n\),但是现在\(j\)只枚举到\(i\)就非常难受,考虑怎么求\(\sum_{i=1}^n\sum_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}\)。

可以把它看成是一个\(n*n\)的网格,第\(i\)行第\(j\)列上的数是\(\frac{lcm(i,j)}{gcd(i,j)}\),需要我们求的是包括对角线在内的下三角矩阵的权值和。

所以答案为(所有网格权值之和+对角线上的权值和)/2。

\[\sum_{i=1}^n\sum_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}
\]

\[=\sum_{d=1}^n\sum_{i=1}^n\sum_{j=1}^n\frac{ij}{d^2}[gcd(i,j)==d]
\]

\[=\sum_{d=1}^n\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}ij[gcd(i,j)==1]
\]

考虑怎么求后半部分

\[\sum_{i=1}^n\sum_{j=1}^nij[gcd(i,j)==1]
\]

\[=\sum_{i=1}^n\sum_{j=1}^nij\sum_{d|gcd(i,j)}\mu_d
\]

枚举\(d\)

\[=\sum_{d=1}^n\mu_d\sum_{d|i}^n\sum_{d|j}^nij
\]

\[=\sum_{d=1}^n\mu_dd^2\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}ij
\]

令\(sum(n)=\sum_{i=1}^ni\),

所以原式

\[=\sum_{i=1}^n\mu_ii^2sum(n/i)^2
\]

带回到一开始的式子里去

\[\sum_{d=1}^n\sum_{i=1}^{n/d}\mu_ii^2sum(\frac{n}{id})^2
\]

按照套路令\(T=id\)

\[=\sum_{T=1}^nsum(n/T)^2\sum_{d|T}\mu_dd^2
\]

令\(f(x)=\sum_{d|x}\mu_dd^2\),现在如果我们可以快速的求出\(f(x)\)的前缀和,那么就可以数论分块算答案了。

可是\(f(x)\)并不是一个熟悉的数论函数,怎么才能用杜教筛呢?

可以把\(f(x)\)写成几个函数的卷积的形式。

令\(g(x)=\mu_xx^2\)。那么\(f=g*1\)。现在要找一个函数\(h\)使得\(f*h=g*1*h\)好算。我们知道\(\sum_{d|x}\mu_d=e\),所以令\(h(x)=x^2\)来把\(g(x)中的乘x^2\)消掉。

所以就构造出了\(s=f*h=g*1*h=e*1=1\),不难发现\(f\)是个积性函数,可以线筛。

#include<complex>
#include<cstdio>
#include<map>
using namespace std;
const int mod=1e9+7;
const int N=2e6+7;
int n,tot,inv2=mod+1>>1,inv6=166666668;
int prime[N],mu[N],f[N];
bool check[N];
map<int,int>mp;
int qread()
{
int x=0;
char ch=getchar();
while(ch<'0' || ch>'9')ch=getchar();
while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
}
void Init()
{
int nn=min(n,N-1);
check[1]=f[1]=1;
for(int i=2;i<=nn;i++)
{
if(!check[i])prime[++tot]=i,f[i]=1-1ll*i*i%mod;
for(int j=1;j<=tot && i*prime[j]<=nn;j++)
{
check[i*prime[j]]=1;
if(i%prime[j])f[i*prime[j]]=1ll*f[i]*f[prime[j]]%mod;
else
{
f[i*prime[j]]=f[i];
break;
}
}
}
for(int i=1;i<=nn;i++)
f[i]=(f[i-1]+f[i])%mod;
}
int Calc1(int x)
{
long long res=1ll*x*(x+1)/2%mod;
return res*res%mod;
}
int Calc2(int x)
{
return 1ll*x*(x+1)%mod*(x+x+1)%mod*inv6%mod;
}
int Sum(int x)
{
if(x<N)return f[x];
if(mp[x])return mp[x];
long long res=x;
for(int l=2,r;l<=x;l=r+1)
{
r=x/(x/l);
res=(res-1ll*(Calc2(r)-Calc2(l-1)+mod)*Sum(x/l))%mod;
}
return mp[x]=(res+mod)%mod;
}
int main()
{
scanf("%d",&n);
Init();
long long ans=0;
for(int l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
ans=(ans+1ll*Calc1(n/l)*(Sum(r)-Sum(l-1)))%mod;
}
printf("%d\n",1ll*(ans+n+mod)*inv2%mod);
return 0;
}

LOJ#6229. 这是一道简单的数学题(莫比乌斯反演+杜教筛)的更多相关文章

  1. 「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛

    题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\]  ...

  2. luogu 3768 简单的数学题 (莫比乌斯反演+杜教筛)

    题目大意:略 洛谷传送门 杜教筛入门题? 以下都是常规套路的变形,不再过多解释 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$ $\sum ...

  3. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  4. loj#6229 这是一道简单的数学题

    \(\color{#0066ff}{ 题目描述 }\) 这是一道非常简单的数学题. 最近 LzyRapxLzyRapx 正在看 mathematics for computer science 这本书 ...

  5. loj#6229. 这是一道简单的数学题 (??反演+杜教筛)

    题目链接 题意:给定\(n\le 10^9\),求:\(F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)} ...

  6. 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】

    题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...

  7. LOJ#6491. zrq 学反演(莫比乌斯反演 杜教筛)

    题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \ ...

  8. EOJ Monthly 2019.11 E. 数学题(莫比乌斯反演+杜教筛+拉格朗日插值)

    传送门 题意: 统计\(k\)元组个数\((a_1,a_2,\cdots,a_n),1\leq a_i\leq n\)使得\(gcd(a_1,a_2,\cdots,a_k,n)=1\). 定义\(f( ...

  9. 【luogu3768】简单的数学题 欧拉函数(欧拉反演)+杜教筛

    题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . ...

随机推荐

  1. k8s-架构中各个组件介绍

    参考链接:https://github.com/opsnull/follow-me-install-kubernetes-cluster kubernetes 概述 1.kubernetes 是什么 ...

  2. 在 Docker 中运行 SpringBoot 应用

    创建 SpringBoot 项目 用 Idea 创建一个 SpringBoot 项目,编写一个接口: package cloud.dockerdemo import org.springframewo ...

  3. laravel 5.5 仓库模式 文件之间接口与实现操作

    仓库模式 最直接的意思就是: Eloquent数据(数据库)查询  方便快捷,简单明了.自己怎么写的,就怎么去调用,完全ok~ 本质意思: 仓库就像是业务内部的数据对象集合,负责协调业务和数据映射层之 ...

  4. Java深入学习(5):锁

    可重入锁: 简单来说,支持重复加锁,有可重用性 特征:锁可以传递,方法递归传递 目的:避免了死锁现象 代码: public class Test implements Runnable { @Over ...

  5. S5PV210 固件烧写 u-boot烧写

    首先阅读CW210_CD自带光盘中CW210 开发板使用手册.pdf 使用usb 拨码开关置成usb启动.xx可以是ON或OFF.开发板上面也有丝印提示 usb线接好,串口线接好 使用DNW下载 自带 ...

  6. Python之路(第四十二篇)线程相关的其他方法、join()、Thread类的start()和run()方法的区别、守护线程

    一.线程相关的其他方法 Thread实例对象的方法 # isAlive(): 返回线程是否活动的. # getName(): 返回线程名. # setName(): 设置线程名. ​ threadin ...

  7. centos7配置jdk8环境变量

    最近在Linux的环境下配置jdk,参照网上的一些教程出现了一些问题,原因大致是由于centos的系统版本不同或者是jdk的版本不同导致出现了一定的问题.包括常规的因为classpath配置不对出现的 ...

  8. Appium的测试简单流程

    1.环境的搭建:jdk,SDK,appium,手机模拟器(夜神模拟器) 2.appium的运作流程图: 图中的流程步骤简单来说是: 1.测试脚本写入appium: 2.appium创建连接,将脚本利用 ...

  9. 【Axure】原型设计工具的概览与初识

    软件工程综合实践第三次个人作业 作业要求:通过搜索资料和自学,了解原型设计的工具 前言: Axure是一款强大的原型设计工具,具有比较大的用户基础,在此前提下沟通.传输.修改就显得十分方便,并且在细节 ...

  10. zabbix--分布式监控proxy

    zabbix 分布式监控代理(proxy) 概述: zabbix proxy 可以代替 zabbix server 收集性能和可用性数据,然后把数据汇报给 zabbix server,并且在一定程度上 ...