题目链接

建出后缀自动机。

T=0,每个子串算一次,否则每个子串算该子串的\(endpos\)集合大小次。

用\(f[i]\)表示结点\(i\)表示的\(endpos\)集合大小,则\(f[i]\)为其parent tree的子树的\(f\)之和(T=0时,f[i]均为1)。

用\(g[i]\)表示从结点\(i\)出发的子串个数,则\(g[i]\)为\(f[i]\)加上结点\(i\)所有出边的\(g[v]\)之和。

类似平衡树跑第\(k\)小。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define O(x) cout << #x << "=" << x << endl;
using namespace std;
const int MAXN = 1000010;
struct SAM{
int ch[26];
int len, fa;
}sam[MAXN << 1];
int las = 1, cnt = 1, f[MAXN << 1], g[MAXN << 1];
struct Edge{
int next, to;
}e[MAXN << 1];
int head[MAXN << 1], num;
inline void Add(int from, int to){
e[++num].to = to; e[num].next = head[from]; head[from] = num;
}
inline void add(int c){
int p = las; int np = las = ++cnt;
sam[np].len = sam[p].len + 1; f[cnt] = 1;
for(; p && !sam[p].ch[c]; p = sam[p].fa) sam[p].ch[c] = np;
if(!p) sam[np].fa = 1;
else{
int q = sam[p].ch[c];
if(sam[q].len == sam[p].len + 1) sam[np].fa = q;
else{
int nq = ++cnt; sam[nq] = sam[q];
sam[nq].len = sam[p].len + 1;
sam[q].fa = sam[np].fa = nq;
for(; p && sam[p].ch[c] == q; p = sam[p].fa) sam[p].ch[c] = nq;
}
}
}
char a[MAXN];
int t, k;
void dfs(int u){
for(int i = head[u]; i; i = e[i].next){
dfs(e[i].to);
f[u] += f[e[i].to];
}
}
void Dfs(int u){
g[u] = f[u];
for(int i = 0; i < 26; ++i)
if(sam[u].ch[i]){
if(!g[sam[u].ch[i]]) Dfs(sam[u].ch[i]);
g[u] += g[sam[u].ch[i]];
}
}
void DFS(int u, int res){
if(res <= f[u]) return;
res -= f[u];
for(int i = 0; i < 26; ++i)
if(sam[u].ch[i])
if(g[sam[u].ch[i]] >= res){
putchar(i + 'a');
DFS(sam[u].ch[i], res);
return;
}
else res -= g[sam[u].ch[i]];
printf("-1\n");
}
int main(){
scanf("%s", a + 1);
scanf("%d%d", &t, &k);
int len = strlen(a + 1);
for(int i = 1; i <= len; ++i)
add(a[i] - 'a');
for(int i = 2; i <= cnt; ++i)
Add(sam[i].fa, i);
if(t) dfs(1);
else for(int i = 2; i <= cnt; ++i) f[i] = 1;
f[1] = 0;
Dfs(1); DFS(1, k);
return 0;
}

【洛谷 P3975】 [TJOI2015]弦论(后缀自动机)的更多相关文章

  1. 洛谷 P3975 [TJOI2015]弦论 解题报告

    P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...

  2. [洛谷P3975][TJOI2015]弦论

    题目大意:求一个字符串的第$k$大字串,$t$表示长得一样位置不同的字串是否算多个 题解:$SAM$,先求出每个位置可以到达多少个字串($Right$数组),然后在转移图上$DP$,若$t=1$,初始 ...

  3. 【BZOJ3998】[TJOI2015]弦论 后缀自动机

    [BZOJ3998][TJOI2015]弦论 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T ...

  4. BZOJ 3998: [TJOI2015]弦论 [后缀自动机 DP]

    3998: [TJOI2015]弦论 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2152  Solved: 716[Submit][Status] ...

  5. [bzoj3998][TJOI2015]弦论-后缀自动机

    Brief Description 给定一个字符串, 您需要求出他的严格k小子串或非严格k小子串. Algorithm Design 考察使用后缀自动机. 首先原串建SAM, 然后如果考察每个状态代表 ...

  6. 洛谷P4248 [AHOI2013]差异(后缀自动机求lcp之和)

    题目见此 题解:首先所有后缀都在最后一个np节点,然后他们都是从1号点出发沿一些字符边到达这个点的,所以下文称1号点为根节点,我们思考一下什么时候会产生lcp,显然是当他们从根节点开始一直跳相同节点的 ...

  7. BZOJ 3998: [TJOI2015]弦论 后缀自动机 后缀自动机求第k小子串

    http://www.lydsy.com/JudgeOnline/problem.php?id=3998 后缀自动机应用的一个模板?需要对len进行一个排序之后再统计每个出现的数量,维护的是以该字符串 ...

  8. BZOJ 3998 TJOI2015 弦论 后缀自动机+DAG上的dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3998 题意概述:对于一个给定长度为N的字符串,求它的第K小子串是什么,T为0则表示不同位置 ...

  9. 【bzoj3998】[TJOI2015]弦论 后缀自动机+dp

    题目描述 对于一个给定长度为N的字符串,求它的第K小子串是什么. 输入 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个.T=1则表示不同位置 ...

  10. BZOJ 3998 [TJOI2015]弦论 ——后缀自动机

    直接构建后缀自动机. 然后. 然后只需要再后缀自动机的go树上类似二分的方法进行查找即可,实际上是“26分”. 然后遇到了处理right集合的问题,然后觉得在go和parent树上上传都是可以的,毕竟 ...

随机推荐

  1. D3.js的v5版本入门教程(第八章)—— 坐标轴

    D3.js的v5版本入门教程(第八章) D3中没有现成的坐标轴图形,需要我们自己用其他组件拼凑而成.D3中提供了坐标轴组件,使得我们在SVG中绘制一个坐标轴变得像添加一个普通元素那样简单 为了表绘制一 ...

  2. 在Visual Studio中直接编译Fluent的UDF

    VS版本:Visual Studio 2013 Fluent版本:Fluent18.2 首先我们启动VS Studio中直接编译Fluent的UDF" title="在Visual ...

  3. Gradle入门系列

    http://blog.jobbole.com/71999/ 版权声明:本文为博主原创文章,未经博主允许不得转载.

  4. Res-DenseNetSegmentation模型调试记录

    参考:https://blog.csdn.net/AbstractSky/article/details/76769202 https://blog.csdn.net/jsliuqun/article ...

  5. jmeter cookie管理器

    jmeter cookie管理器 不能用正则表达式获取登录接口生成的cookie 因为cookies并不是在登录的响应结果中生成的,而是在response header中携带的,所以不能用正则表达式提 ...

  6. tar_ssh 配合下载文件(适合于带宽充足传输大量小文件场景)

    局域网网速快,但是当要传输大量小文件时倘若仍然使用scp,由于每个文件传输完毕都需要独立进行传输完毕的确认,这样就无法充分利用带宽.一方面等待确认时tcp窗口无法填满,另一方面文件传完之前确认也不会开 ...

  7. 泡泡一分钟:BLVD: Building A Large-scale 5D Semantics Benchmark for Autonomous Driving

    BLVD: Building A Large-scale 5D Semantics Benchmark for Autonomous Driving BLVD:构建自主驾驶的大规模5D语义基准 Jia ...

  8. matlab学习笔记11_1低维数组操作

    一起来学matlab-matlab学习笔记11 11_1 低维数组操作repmat函数,cat函数,diag函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考书籍 <matlab ...

  9. [转]MathJax与LaTex公式简介

    链接地址:https://www.cnblogs.com/linxd/p/4955530.html

  10. mongodb 切换wiredtiger

    1.由于最近用到mongodb但查询时前十分左右,用压力测试不太稳定,所以换成第三方引擎试试,但效果还是一样. 具说第三方引擎比较给力,但在使用没有发现.现将mongodb切换wiredtiger引擎 ...