【题解】【网络流24题】汽车加油行驶问题 [P4009] [Loj6223]
【题解】【网络流24题】汽车加油行驶问题 [P4009] [Loj6223]
传送门:汽车加油行驶问题 \([P4009]\) \([Loj6223]\)
【题目描述】
给出一个 \(N \times N\) 的方形网格,设\((1,1)\)为起点,\((N,N)\) 为终点,\(X\) 轴向右为正, \(Y\) 轴向下为正。
某些地方设有油库,可供汽车加油。汽车行驶应遵守如下规则:
\((1).\) 汽车装满油后能行驶 \(K\) 次,每次行驶距离为 \(1\)。出发时汽车为满油状态,在起点与终点处不设油库。
\((2).\) 汽车行驶路线 \(X\) 坐标或 \(Y\) 坐标每减小 \(1\),则应付费用 \(B\) ,反之则不用。
\((3).\) 在行驶过程中遇到油库会强制加满油并付加油费用 \(A\)。
\((4).\) 途中可在某点处增设加油站,增设费用为 \(C\) \((\)不含加油费用 \(A\) \()\)。
求出汽车从起点出发到达终点所付的最小费用。
【输入】
第一行五个正整数 \(N,K,A,B,C\)。
接下来是一个 \(N \times N\) 的 \(01\) 矩阵,一共 \(n\) 行,每行 \(n\) 个整数。
矩阵的第 \(i\) 行第 \(j\) 列处的值为 \(1\) 表示\((i,j)\) 处有一个加油站,为 \(0\) 则无。
【输出】
输出最小费用。
【样例】
样例输入:
9 3 2 3 6
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 1 0 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0
样例输出:
12
【数据范围】
\(100\%\) \(2 \leqslant n \leqslant 100,\) \(2 \leqslant k \leqslant 10\)
【分析】
这明明是一道网络瘤的题中 なのに,但为啥网络瘤的题解基本没几篇啊 \(...\)
解题思路与这位大佬类似:吾王美如画,本篇题解将针对一些细节进行分析。
首先,应该如何建模呢?
【建模】
俗话说得好啊:网络瘤,网络瘤,网络建模最毒瘤。
注意题目描述中加黑字体部分,如果仔细想想的话,会发现出题人特别良心,为我们去除了很多复杂的情况,建模也方便了许多。
先将题目略微修改一下,原题意不变:一份油可供汽车走一个单位长度,油箱最多可装 \(K\) 份油。
\((1).\) 分层:
把每个坐标分为 \(K+1\) 层,用第 \(0\) 层表示满油状态,第 \(1\) 层表示用掉了 \(1\) 份油,第 \(2\) 表示用掉了 \(2\) 份油 \(...\) 第 \(K\) 层表示油被用光的状态。
\((2).\) 搞一个超级源点和一个超级汇点:
超级源点与第 \(0\) 层的 \((1,1)\)(满油状态的起点)连一条流量为 \(1\) 费用为 \(0\) 的边。
每一层的 \((n,n)\)(任意状态的终点)与超级汇点分别连一条流量为 \(1\) 费用为 \(0\) 的边。
由于起点与终点重合的情况不存在,所以汽车不可能以满油的状态到达任意一个点,只会以满油的状态从某个点出发(在起点或者加了油之后),因此第 \(0\) 层也可以不用连。
\((3).\) 当处理某个点 \((i,j)\) 时,发现这里满是汽油味(有加油站):
不管油箱里还有多少油,不知所措的可怜新司机都会被黑心商家强迫加油,所以每一层的 \((i,j)\) 都要与第 \(0\) 层的 \((i,j)\) 连一条流量为 \(1\) 费用为 \(A\)的边,与上面所说相同,第 \(0\) 层可以不连(实际上自己到自己的边就算连了也不会选)。然后第 \(0\) 层的 \((i,j)\) 再与上下左右四个方向坐标的第 \(1\) 层分别连一条流量为 \(1\) 的边,当向左、向上时费用为 \(B\),反之费用为 \(0\) 。
\((4).\) 当处理某个点 \((i,j)\) 时,发现这里空气清新(没有加油站):
可以选择在这里生成一个加油站,将第 \(K\) 层的 \((i,j)\)(空油箱)与 第 \(0\) 层的 \((i,j)\) 连一条流量为 \(1\) 费用为 \(A+C\) 的边。然后对于 \(k \in [0,K-1]\),将第 \(k\) 层的 \((i,j)\) 与上下左右四个方向坐标的第 \(k+1\) 层分别连一条流量为 \(1\) 的边,费用同上。注意:可以从满油状态出发,所以第 \(0\) 层也要连出去。
\(Q:\) あの、あの、为什么坐标与坐标连边时流量为 \(1\) 鸭?嗯 \(...\) 为什么只在油箱为空时才生成加油站捏?还有哇,生成的加油站可能会在下一次到达时再次使用咩?
\(A:\) 其实是有点贪心的味道,由于往回走有花费且为正整数,所以不会回到已经走过的地方去。生成加油站也是一样的,反正早点生成晚点生成都没有影响,在一条路走到底后再生成不是更好吗?因此上面所有的建边流量都为 \(1\),而不是 \(inf\)。如果你愿意,用 \(inf\) 也没关系,只要把超级源点或超级汇点连出去的边流量设为 \(1\) 即可。
【求答案】
跑一便 \(MCMF\) 模板就可以了。最大流为 \(1\),最小花费即为答案。
\(Q:\) 什么?最大流为 \(1\)?那和跑最短路有什么区别?直接去掉费用流中 \(EK\) 的过程,留下 \(SPFA\) 不就是个最短路了吗?
\(A:\) 好像没毛病。。。但毕竟这道题考察的是建模能力嘛,只要模型分析了出来,用什么算法实现都无所谓啦!\(QAQ\)
最后再粗略地算一算这道题的空间复杂度:
首先是点数,\(N*N\) 个坐标,\(K+1\) 层,加上超级源、汇点,总点数为:\((100*100*11+2=110002)\)。
然后是边数,\(N*N\) 个坐标,\(K+1\) 层,每层每个坐标要与上下左右四个方向连边,还要与第 \(0\) 层连边(表示加油),然后终点的每一层都要与超级汇点相连,最后是超级源点和起点的连边,对于每条边都要同时建一条反向边供我们反悔,总边数为:\((N*N*(K+1)*4+K+1)*2=440011*2\) 。当然,实际上基本达不到这个值。
【Code】
#include<algorithm>
#include<cstdio>
#include<queue>
#define LL long long
#define Re register int
using namespace std;
const int N=11e4+5,M=6e5+5,inf=2e9;
int x,y,z,w,o=1,n,m,h,t,A,B,C,K,st,ed,cyf[N],pan[N],pre[N],dis[N],head[N];LL mincost,maxflow;
struct QAQ{int w,to,next,flow;}a[M<<1];queue<int>Q;
inline void in(Re &x){
int f=0;x=0;char c=getchar();
while(c<'0'||c>'9')f|=c=='-',c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=f?-x:x;
}
inline void add(Re x,Re y,Re z,Re w){a[++o].flow=z,a[o].w=w,a[o].to=y,a[o].next=head[x],head[x]=o;}
inline void add_(Re a,Re b,Re flow,Re w){add(a,b,flow,w),add(b,a,0,-w);}
inline int SPFA(Re st,Re ed){
for(Re i=0;i<=ed;++i)dis[i]=inf,pan[i]=0;
Q.push(st),pan[st]=1,dis[st]=0,cyf[st]=inf;
while(!Q.empty()){
Re x=Q.front();Q.pop();pan[x]=0;
for(Re i=head[x],to;i;i=a[i].next)
if(a[i].flow&&dis[to=a[i].to]>dis[x]+a[i].w){
dis[to]=dis[x]+a[i].w,pre[to]=i;
cyf[to]=min(cyf[x],a[i].flow);
if(!pan[to])pan[to]=1,Q.push(to);
}
}
return dis[ed]!=inf;
}
inline void EK(Re st,Re ed){
while(SPFA(st,ed)){
Re x=ed;maxflow+=cyf[ed],mincost+=(LL)cyf[ed]*dis[ed];
while(x!=st){
Re i=pre[x];
a[i].flow-=cyf[ed];
a[i^1].flow+=cyf[ed];
x=a[i^1].to;
}
}
}
inline int P(Re x,Re y,Re k){return (x-1)*n+y+k*n*n;}
int main(){
in(n),in(K),in(A),in(B),in(C),st=(K+1)*n*n+1,ed=st+1;//一共有(K+1)层
add_(st,P(1,1,0),1,0);//超级源点连到满油的起点
for(Re k=1;k<=K;++k)add_(P(n,n,k),ed,1,0);
//把每一层的终点连到超级汇点,所以第0层可以不连
for(Re i=1;i<=n;++i)
for(Re j=1;j<=n;++j){
in(x);
if(x){//已有加油站
for(Re k=1;k<=K;++k)add_(P(i,j,k),P(i,j,0),1,A);
//所有状态都必须花费A加油加到满,但由于不可能满油到达某一点,所以满油的第0层可以不加(连)
//加满油之后状态可以由满油状态到达K-1油的上下左右四个方向
if(i<n)add_(P(i,j,0),P(i+1,j,1),1,0);//横坐标+1,费用为0
if(j<n)add_(P(i,j,0),P(i,j+1,1),1,0);//纵坐标+1,费用为0
if(i>1)add_(P(i,j,0),P(i-1,j,1),1,B);//横坐标-1,费用为B
if(j>1)add_(P(i,j,0),P(i,j-1,1),1,B);//纵坐标-1,费用为B
}
else{//无加油站
for(Re k=0;k<K;++k){//从有油的状态到达下一层的四个方向
if(i<n)add_(P(i,j,k),P(i+1,j,k+1),1,0);//横坐标+1,费用为0
if(j<n)add_(P(i,j,k),P(i,j+1,k+1),1,0);//纵坐标+1,费用为0
if(i>1)add_(P(i,j,k),P(i-1,j,k+1),1,B);//横坐标-1,费用为B
if(j>1)add_(P(i,j,k),P(i,j-1,k+1),1,B);//纵坐标-1,费用为B
}
add_(P(i,j,K),P(i,j,0),1,A+C);//没有加油站的地方可以自给自足
}
}
EK(st,ed);//跑一跑模板MCMF
printf("%lld",mincost);
}
【题解】【网络流24题】汽车加油行驶问题 [P4009] [Loj6223]的更多相关文章
- 洛谷P4009汽车加油行驶问题——网络流24题(最短路)
题目:https://www.luogu.org/problemnew/show/P4009 网络流24题中不是网络流的最短路题: 把每个点拆成各个油量上的点,根据要求连边即可: 注意:点数最大为10 ...
- 【题解】【网络流24题】航空路线问题 [P2770] [Loj6122]
[题解][网络流24题]航空路线问题 [P2770] [Loj6122] 传送门:航空路线问题 \([P2770]\) \([Loj6122]\) [题目描述] 给出一张有向图,每个点(除了起点 \( ...
- [网络流24题]最长k可重区间集[题解]
最长 \(k\) 可重区间集 题目大意 给定实心直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取开区间集 ...
- 网络流24题 gay题报告
洛谷上面有一整套题. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 extra ①飞行员配对方案问题.top 裸二分图匹 ...
- 【算法】【网络流24题】巨坑待填(成功TJ,有时间再填)
------------------------------------------------------------------------------------ 17/24 --------- ...
- 【线性规划与网络流 24题】已完成(3道题因为某些奇怪的原因被抛弃了QAQ)
写在前面:SDOI2016 Round1滚粗后蒟蒻开始做网络流来自我拯救(2016-04-11再过几天就要考先修课,现在做网络流24题貌似没什么用←退役节奏) 做的题目将附上日期,见证我龟速刷题. 1 ...
- 网络流 24 题汇总(LOJ 上只有 22 题???)
太裸的我就不放代码了...(黑体字序号的题表示值得注意) 1.搭配飞行员 [LOJ#6000] 二分图最大匹配. 2.太空飞行计划 [LOJ#6001] 最小割常规套路.输出方案.(注:这题换行符要用 ...
- 网络流基础&网络流24题
网络最大流 dinic+当前弧优化. const int N=10007,M=100007,inf=1e9; int s,t,head[N],ver[M],edge[M],Next[M],tot=1, ...
- LOJ6000 - 「网络流 24 题」搭配飞行员
原题链接 题意简述 求二分图的最大匹配. 题解 这里写的是匈牙利算法. 表示节点的当前匹配. 为真表示在这一轮匹配中,无法给节点一个新的匹配.所以如果为真就不用再dfs它了,直接continue就好. ...
随机推荐
- 字符串的sizeof长度及strlen长度
在C/C++中,字符串是以零('\0')结尾的.比如,对于下面的字符串: "hello" 在最后一个字符'd'后面,还有一个我们肉眼看不见的'\0'字符,作为该字符串的结束符.所 ...
- flink 安装及wordcount
1.下载 http://mirror.bit.edu.cn/apache/flink/ 2.安装 确保已经安装java8以上 解压flink tar zxvf flink-1.8.0-bin-scal ...
- 使用Fiddler监听java HttpURLConnection请求
使用Fiddler监听java HttpURLConnection请求
- C# Form 实现桌面弹幕
使用C# Form 简单的实现了弹幕效果 0. 源代码 : https://github.com/ping9719/-desktop-barrage- 1.创建一个Form 设置 2.添加一个计时器 ...
- 配置以https访问网站
环境 centos7 nginx1.16.1 一.申请证书(已有域名) 进入阿里云控制台,点击域名(我已经弄好了,一开始是没有ssl选项) 点击免费开启ssl 点购买->选择免费版 购买成功后 ...
- 《linux就该这么学》课堂笔记14 Apache、SELinux、虚拟主机
1.目前能够提供Web网络服务的程序有IIS(Windows系统中默认的Web服务程序,是一款图形化的网站管理工具).Nginx和Apache(RHEL 7系统中默认的Web服务程序)等. Apach ...
- 交叉编译用于生成aarch64指令的GCC (9.2)
参考 Building GCC as a cross compiler for Raspberry Pi How to Build a GCC Cross-Compiler 环境 PC: ubuntu ...
- Nginx 反向代理功能-实现Nginx tcp负载均衡
Nginx 反向代理功能-实现Nginx tcp负载均衡 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
- InterpretML 微软可解释性机器学习包
InterpretML InterpretML: A Unified Framework for Machine Learning Interpretability https://github.co ...
- 资源管理(Resource Management),知识点
资料 网址 资源管理(Resource Management)服务 包含一系列支持企业IT治理的资源管理产品集合,主要包括资源组和资源目录.通过资源管理服务,您可以按照业务需要搭建合适的资源组织关系, ...