python高级编程——锁
锁
使用锁:
锁的语法
创建锁、锁定锁、释放锁
from threading import Lock # 创建锁
mutex = Lock()
# 获取锁(上锁)
mutex.acquire()
# 释放锁(解锁)
mutex.release()
在锁定锁的过程中acquire()方法可以接受一个blocking参数,
如果设定blocking为True,则当前线程会堵塞,直到获取到这个锁为止(如果没有 指定,那么默认为True)
如果设定blocking为False,则当前线程不会堵塞
上锁和解锁的过程(假设是多线程调度):
这个锁一般是为共享资源服务的,即多个线程同时使用共享资源。这个锁同一时间只能有一个线程调度,其他线程阻塞,只有当前调度的线程释放这个锁,阻塞的线程才能调度。
锁的优点:
确保了某段关键代码只能有一个线程从头到尾完整的执行。
锁的缺点:
组织了多线程的并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大的降低了;代码中可能存在多个锁,如果多个线程拥有多个锁,容易造成死锁。
死锁的现象(实例):
# 死锁 两者都没有释放对方需要的锁,而释放的条件恰好是获取对方释放所需要的锁
# 线程1
class MyThread1(threading.Thread):
def __init__(self):
super().__init__() def run(self):
# 线程1获取A锁
if mutexA.acquire():
print(self.name+"-----do1---up-----")
sleep(1)
# 此时线程2获取了B锁,需要等待线程2释放B锁
if mutexB.acquire():
print(self.name + "-----do1---down-----")
mutexB.release()
mutexA.release() # 线程2
class MyThread2(threading.Thread):
def __init__(self):
super().__init__() def run(self):
# 线程2获取B锁
if mutexB.acquire():
print(self.name + "-----do2---up-----")
sleep(1)
# 此时线程1获取了A锁,需要等待线程1释放A锁
if mutexA.acquire():
print(self.name + "-----do2---down-----")
mutexA.release()
mutexB.release() mutexA = threading.Lock()
mutexB = threading.Lock() if __name__ == '__main__':
# 线程1和线程2同时执行
t1 = MyThread1()
t2 = MyThread2()
t1.start()
t2.start()
避免死锁的方法:银行家算法
多进程与多线程比较及选择
是否采用多任务处理,取决于我们的任务类型
如果是计算密集型,需要大量的CPU资源进行运算,代码的运行效率至关重 要,这样的任务一般不使用多线程进行,因为频繁的任务调度会拖慢CPU的
运算。
如果是IO密集型,涉及到硬盘读写,网络读写等的任务,更多的时间在等待 IO操作完成,这一类任务可以放到多线程或多进程中来进行。
单线程、多线程、多进程(一起实现同一代码的时间)
# 单线程、多线程、多进程的使用及不同
# 简单的求和
def fib(x):
res = 0
for i in range(100000000):
res += i*x
return res # 阶乘
def fac(x):
if x < 2:
return 1
return x*fac(x-1) # 简单的求和
def sum(x):
res = 0
for i in range(50000000):
res += i*x
return res # 函数列表
funcs = [fib, fac, sum]
n = 100 class MyThread(threading.Thread):
def __init__(self, func, args, name=""):
super().__init__()
self.name = name
self.func = func
self.args = args
self.res = 0 def getResult(self):
return self.res def run(self):
print("starting ", self.name, " at: ", ctime())
self.res = self.func(self.args)
print(self.name, "finished at: ", ctime()) def main():
nfuncs = range(len(funcs)) print("单线程".center(30, "*"))
start = time()
for i in nfuncs:
print("start {} at: {}".format(funcs[i].__name__, ctime()))
start_task = time()
print(funcs[i](n))
end_task = time()
print("任务 耗时:", end_task-start_task)
print("{} finished at: {}".format(funcs[i].__name__, ctime())) end = time()
print("单线程运行时间:", end-start)
print("单线程结束:".center(30, "*")) print()
print("多线程".center(30, "*"))
start = time()
threads = []
for i in nfuncs:
# 一个线程绑定一个函数
t = MyThread(funcs[i], n, funcs[i].__name__)
threads.append(t) for i in nfuncs:
# 同时启动线程
threads[i].start() for i in nfuncs:
threads[i].join()
print(threads[i].getResult())
end = time()
print("多线程运行时间:", end-start)
print("多线程结束:".center(30, "*")) print()
print("多进程".center(30, "*"))
start = time()
process_list = []
for i in nfuncs:
# 一个进程绑定一个函数
t = Process(target=funcs[i], args=(n, ))
process_list.append(t) for i in nfuncs:
# 同时启动进程
process_list[i].start() for i in nfuncs:
process_list[i].join()
end = time()
print("多进程运行时间:", end - start)
print("多进程结束:".center(30, "*")) if __name__ == "__main__":
main()
python高级编程——锁的更多相关文章
- 第十章:Python高级编程-多线程、多进程和线程池编程
第十章:Python高级编程-多线程.多进程和线程池编程 Python3高级核心技术97讲 笔记 目录 第十章:Python高级编程-多线程.多进程和线程池编程 10.1 Python中的GIL 10 ...
- python高级编程:有用的设计模式3
# -*- coding: utf-8 -*-__author__ = 'Administrator'#python高级编程:有用的设计模式#访问者:有助于将算法从数据结构中分离出来"&qu ...
- python高级编程:有用的设计模式2
# -*- coding: utf-8 -*- __author__ = 'Administrator' #python高级编程:有用的设计模式 #代理 """ 代理对一 ...
- python高级编程:有用的设计模式1
# -*- coding: utf-8 -*-__author__ = 'Administrator'#python高级编程:有用的设计模式#设计械是可复用的,某种程序上它对软件设计中觉问题提供的语言 ...
- python高级编程技巧
由python高级编程处学习 http://blog.sina.com.cn/s/blog_a89e19440101fb28.html Python列表解析语法[]和生成 器()语法类似 [expr ...
- python高级编程之选择好名称:完
由于时间关系,python高级编程不在放在这边进行学习了,如果需要的朋友可以看下面的网盘进行下载 # # -*- coding: utf-8 -*- # # python:2.x # __author ...
- python高级编程读书笔记(一)
python高级编程读书笔记(一) python 高级编程读书笔记,记录一下基础和高级用法 python2和python3兼容处理 使用sys模块使程序python2和python3兼容 import ...
- python高级编程之列表推导式
1. 一个简单的例子 在Python中,如果我们想修改列表中所有元素的值,可以使用 for 循环语句来实现. 例如,将一个列表中的每个元素都替换为它的平方: >>> L = [1, ...
- Python高级编程之生成器(Generator)与coroutine(二):coroutine介绍
原创作品,转载请注明出处:点我 上一篇文章Python高级编程之生成器(Generator)与coroutine(一):Generator中,我们介绍了什么是Generator,以及写了几个使用Gen ...
随机推荐
- 《SQL Server 2008 R2》 收缩数据库日志文件
USE [master] GO /****** Object: StoredProcedure [dbo].[pro_Shrink_Log] Script Date: 2019/8/16 16:56: ...
- 使用类似GeoJson的数据生成物体(建筑等)的功能逻辑
GeoJson作为一种模型传输格式, 用的最多的就是地图里面的各种简单模型了, 比如下图中很贴切的俄罗斯方块楼: 它的格式大概就是下面这样: { "type": "Fea ...
- flask如何返回真正意义上的json字符串?以及中文如何正常显示?
flask中,不能直接return字典,需要把字典转换为json字符串方式有三种:1. return str(字典)2.return json.dumps(字典)3.return jsonify(字典 ...
- 【使用篇二】SpringBoot整合mybatis(7)
说明:使用SpringBoot+Mybatis+Jsp实现简单的用户增删查改 #用户表 DROP TABLE IF EXISTS `user`; CREATE TABLE `user` ( `) NO ...
- 洛谷 P2357 守墓人
洛谷 P2357 守墓人 题目描述 在一个荒凉的墓地上 有一个令人尊敬的守墓人, 他看守的墓地从来 没有被盗过, 所以人们很放心的把自己的先人的墓 安顿在他那 守墓人能看好这片墓地是必然而不是偶然.. ...
- 使用教育邮箱免费申请JetBrains套装(IntelliJ, PhpStorm, WebStorm...)
想下个PhpStorm来写php,发现可以使用教育账号白嫖. 申请步骤 打开 申请页面 ,点击 “APPLY NOW” 开始申请. 填写姓名,以及学校提供给你的邮箱(edu后缀邮箱,或.end.cn) ...
- c#中几种数据结构
数组型: Array:内存连续分配,长度不可变,可索引访问. ArrayList:早期版本使用,非泛型,类型不安全,如果元素数据类型不同可考虑使用. List<>:泛型,可变长度,内存连续 ...
- Tiling Terrace CodeForces - 1252J(dp、贪心)
Tiling Terrace \[ Time Limit: 1000 ms\quad Memory Limit: 262144 kB \] 题意 给出一个字符串 \(s\),每次可以选择三种类型来获得 ...
- MySQL实战45讲学习笔记:第二十九讲
一.引子 我在第25和27篇文章中,和你介绍了主备切换流程.通过这些内容的讲解,你应该已经很清楚了:在一主一备的双 M 架构里,主备切换只需要把客户端流量切到备库:而在一主多从架构里,主备切换除了要把 ...
- [LeetCode] 344. Reverse String 翻转字符串
Write a function that reverses a string. The input string is given as an array of characters char[]. ...