在使用用的过程中需要导入threading模块的Lock类

使用锁:

  当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制
  线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互 斥锁。 
  互斥锁为资源引入一个状态:锁定/非锁定。
 

锁的语法

  创建锁、锁定锁、释放锁

from threading import Lock

# 创建锁
mutex = Lock()
# 获取锁(上锁)
mutex.acquire()
# 释放锁(解锁)
mutex.release()

  在锁定锁的过程中acquire()方法可以接受一个blocking参数,

    如果设定blocking为True,则当前线程会堵塞,直到获取到这个锁为止(如果没有 指定,那么默认为True)

    如果设定blocking为False,则当前线程不会堵塞

  上锁和解锁的过程(假设是多线程调度):

    这个锁一般是为共享资源服务的,即多个线程同时使用共享资源。这个锁同一时间只能有一个线程调度,其他线程阻塞,只有当前调度的线程释放这个锁,阻塞的线程才能调度。

  锁的优点:

    确保了某段关键代码只能有一个线程从头到尾完整的执行。

  锁的缺点:

    组织了多线程的并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大的降低了;代码中可能存在多个锁,如果多个线程拥有多个锁,容易造成死锁。

  死锁的现象(实例):

# 死锁 两者都没有释放对方需要的锁,而释放的条件恰好是获取对方释放所需要的锁
# 线程1
class MyThread1(threading.Thread):
def __init__(self):
super().__init__() def run(self):
# 线程1获取A锁
if mutexA.acquire():
print(self.name+"-----do1---up-----")
sleep(1)
# 此时线程2获取了B锁,需要等待线程2释放B锁
if mutexB.acquire():
print(self.name + "-----do1---down-----")
mutexB.release()
mutexA.release() # 线程2
class MyThread2(threading.Thread):
def __init__(self):
super().__init__() def run(self):
# 线程2获取B锁
if mutexB.acquire():
print(self.name + "-----do2---up-----")
sleep(1)
# 此时线程1获取了A锁,需要等待线程1释放A锁
if mutexA.acquire():
print(self.name + "-----do2---down-----")
mutexA.release()
mutexB.release() mutexA = threading.Lock()
mutexB = threading.Lock() if __name__ == '__main__':
# 线程1和线程2同时执行
t1 = MyThread1()
t2 = MyThread2()
t1.start()
t2.start()

  避免死锁的方法:银行家算法

多进程与多线程比较及选择

是否采用多任务处理,取决于我们的任务类型

如果是计算密集型,需要大量的CPU资源进行运算,代码的运行效率至关重 要,这样的任务一般不使用多线程进行,因为频繁的任务调度会拖慢CPU的
运算。

如果是IO密集型,涉及到硬盘读写,网络读写等的任务,更多的时间在等待 IO操作完成,这一类任务可以放到多线程或多进程中来进行。

单线程、多线程、多进程(一起实现同一代码的时间)

# 单线程、多线程、多进程的使用及不同
# 简单的求和
def fib(x):
res = 0
for i in range(100000000):
res += i*x
return res # 阶乘
def fac(x):
if x < 2:
return 1
return x*fac(x-1) # 简单的求和
def sum(x):
res = 0
for i in range(50000000):
res += i*x
return res # 函数列表
funcs = [fib, fac, sum]
n = 100 class MyThread(threading.Thread):
def __init__(self, func, args, name=""):
super().__init__()
self.name = name
self.func = func
self.args = args
self.res = 0 def getResult(self):
return self.res def run(self):
print("starting ", self.name, " at: ", ctime())
self.res = self.func(self.args)
print(self.name, "finished at: ", ctime()) def main():
nfuncs = range(len(funcs)) print("单线程".center(30, "*"))
start = time()
for i in nfuncs:
print("start {} at: {}".format(funcs[i].__name__, ctime()))
start_task = time()
print(funcs[i](n))
end_task = time()
print("任务 耗时:", end_task-start_task)
print("{} finished at: {}".format(funcs[i].__name__, ctime())) end = time()
print("单线程运行时间:", end-start)
print("单线程结束:".center(30, "*")) print()
print("多线程".center(30, "*"))
start = time()
threads = []
for i in nfuncs:
# 一个线程绑定一个函数
t = MyThread(funcs[i], n, funcs[i].__name__)
threads.append(t) for i in nfuncs:
# 同时启动线程
threads[i].start() for i in nfuncs:
threads[i].join()
print(threads[i].getResult())
end = time()
print("多线程运行时间:", end-start)
print("多线程结束:".center(30, "*")) print()
print("多进程".center(30, "*"))
start = time()
process_list = []
for i in nfuncs:
# 一个进程绑定一个函数
t = Process(target=funcs[i], args=(n, ))
process_list.append(t) for i in nfuncs:
# 同时启动进程
process_list[i].start() for i in nfuncs:
process_list[i].join()
end = time()
print("多进程运行时间:", end - start)
print("多进程结束:".center(30, "*")) if __name__ == "__main__":
main()

python高级编程——锁的更多相关文章

  1. 第十章:Python高级编程-多线程、多进程和线程池编程

    第十章:Python高级编程-多线程.多进程和线程池编程 Python3高级核心技术97讲 笔记 目录 第十章:Python高级编程-多线程.多进程和线程池编程 10.1 Python中的GIL 10 ...

  2. python高级编程:有用的设计模式3

    # -*- coding: utf-8 -*-__author__ = 'Administrator'#python高级编程:有用的设计模式#访问者:有助于将算法从数据结构中分离出来"&qu ...

  3. python高级编程:有用的设计模式2

    # -*- coding: utf-8 -*- __author__ = 'Administrator' #python高级编程:有用的设计模式 #代理 """ 代理对一 ...

  4. python高级编程:有用的设计模式1

    # -*- coding: utf-8 -*-__author__ = 'Administrator'#python高级编程:有用的设计模式#设计械是可复用的,某种程序上它对软件设计中觉问题提供的语言 ...

  5. python高级编程技巧

    由python高级编程处学习 http://blog.sina.com.cn/s/blog_a89e19440101fb28.html Python列表解析语法[]和生成 器()语法类似 [expr  ...

  6. python高级编程之选择好名称:完

    由于时间关系,python高级编程不在放在这边进行学习了,如果需要的朋友可以看下面的网盘进行下载 # # -*- coding: utf-8 -*- # # python:2.x # __author ...

  7. python高级编程读书笔记(一)

    python高级编程读书笔记(一) python 高级编程读书笔记,记录一下基础和高级用法 python2和python3兼容处理 使用sys模块使程序python2和python3兼容 import ...

  8. python高级编程之列表推导式

    1. 一个简单的例子 在Python中,如果我们想修改列表中所有元素的值,可以使用 for 循环语句来实现. 例如,将一个列表中的每个元素都替换为它的平方: >>> L = [1, ...

  9. Python高级编程之生成器(Generator)与coroutine(二):coroutine介绍

    原创作品,转载请注明出处:点我 上一篇文章Python高级编程之生成器(Generator)与coroutine(一):Generator中,我们介绍了什么是Generator,以及写了几个使用Gen ...

随机推荐

  1. 还是畅通工程 HDU - 1233

    题目链接:https://vjudge.net/problem/HDU-1233 思路: 最小生成树板子. #include <iostream> #include <stdio.h ...

  2. 201871010104-陈园园 《面向对象程序设计(java)》第八周学习总结

    201871010104-陈园园 <面向对象程序设计(java)>第八周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ ...

  3. pikachu 文件包含,上传,下载

    一.文件包含 1.File Inclusion(local) 我们先测试一下,选择kobe然后提交 发现url出现变化 可以猜测此功能为文件包含,包含的文件为 file1.php,所以我在此盘符的根目 ...

  4. 怎么在虚拟机下的Linux系统安装数据库

    1.查看 linux下是否有老版本的mysql(有删除) 查找old mysql:rpm -qa | grep mysql 卸载:卸载命令:rpm –ev {包名}——:rpm -ev mysql-c ...

  5. python27期day10:函数的动态参数、函数的注释、函数的名称空间、函数的嵌套、global(修改全局的)、nonlocal(修改局部的)、函数名的第一类对象及使用、作业题。

    1.动态参数的作用: 能够接收不固定长度参数 位置参数过多时可以使用动态参数 * args是程序员之间约定俗称(可以更换但是不建议更换) * args获取的是一个元组 ** kwargs获取的是一个字 ...

  6. 自定义web框架(django)

    Django基础了解知识 HTTP协议(超文本传输协议) HTTP协议 四大特性: 基于TCP/IP之上作用于应用层 基于请求响应 无状态 引申出cookie session token-- 无连接 ...

  7. zz深度学习中的注意力模型

    中间表示: C -> C1.C2.C3 i:target -> IT j: source -> JS sim(Query, Key) -> Value Key:h_j,类似某种 ...

  8. WebJars简介 —— 前端资源的jar包形式(以后接触到再深入总结)

    对于日常的web开发而言,像css.js.images.font等静态资源文件管理是非常的混乱的.比如jQuery.Bootstrap.Vue.js等,可能每个框架使用的版本都不一样.一不注意就会出现 ...

  9. 编码-转义2-mark

    文本编辑器utf8 "一".encode("gbk") 保存:"一"+utf8     保存为16进制的\xe4\xb8\x80,\x标识了 ...

  10. b站滑动验证码图片的获取-python

    本文仅是获取验证码图片,python+selenium实现 图片的处理,算出偏移位置网上都有现成的:而由于b站的更新,图片的获取则与之前完全不同,不能直接从html中拿到 过程比较曲折所以记录一下,可 ...