Problem B

Board Wrapping

Input: standard input

Output: standard output

Time Limit: 2 seconds

The small sawmill in Mission, British Columbia, has developed a brand new way of packaging boards for drying. By fixating the boards in special moulds, the board can dry efficiently in a drying room.

Space is an issue though. The boards cannot be too close, because then the drying will be too slow. On the other hand, one wants to use the drying room efficiently.

Looking at it from a 2-D perspective, your task is to calculate the fraction between the space occupied by the boards to the total space occupied by the mould. Now, the mould is surrounded by an aluminium frame of negligible thickness, following
the hull of the boards' corners tightly. The space occupied by the mould would thus be the interior of the frame.

Input

On the first line of input there is one integer, N <= 50, giving the number of test cases (moulds) in the input. After this line, N test cases follow. Each test case starts with a line containing one integer n1<
n <= 600
, which is the number of boards in the mould. Then n lines follow, each with five floating point numbers x, y, w, h, j where 0 <= x, y, w, h <=10000 and –90° < j <=90°. The x and y are
the coordinates of the center of the board and w and h are the width and height of the board, respectively. j is the angle between the height axis of the board to the y-axis in degrees, positive
clockwise. That is, if j = 0, the projection of the board on the x-axis would be w. Of course, the boards cannot intersect.

Output

For every test case, output one line containing the fraction of the space occupied by the boards to the total space in percent. Your output should have one decimal digit and be followed by a space and a percent sign (%).

Sample Input                              Output for Sample Input

1

4

4 7.5 6 3 0

8 11.5 6 3 0

9.5 6 6 3 90

4.5 3 4.4721 2.2361 26.565

64.3 %


Swedish National Contest

The Sample Input and Sample Output corresponds to the given picture

题目大意:

给n个矩形木板,你要用一个面积尽量小的凸多边形把它们包起来,求木板占整个包装面积的百分比。

解题思路:

最主要还是求凸包。

解题代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; const double eps=1e-7;
struct Point{
double x,y;
Point(double x0=0,double y0=0){
x=x0,y=y0;
}
void read(){ scanf("%lf%lf",&x,&y); }
friend bool operator < (Point a,Point b){
if(a.y!=b.y) return a.y<b.y;
else return a.x<b.x;
}
double getdis(Point q){ return sqrt( (x-q.x)*(x-q.x)+(y-q.y)*(y-q.y) ); }
}; typedef Point Vector; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); } int dcmp(double x) { if(fabs(x)<eps) return 0; else return x<0?-1:1; }
double Dot(Vector A,Vector B){ return A.x*B.x+A.y*B.y; }
double Length(Vector A){ return sqrt(Dot(A,A)); }
double Angle(Vector A,Vector B){ return acos(Dot(A,B)/Length(A)/Length(B)); }
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x; }
Vector Rotate(Vector A,double rad){ return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); }//逆时针旋转rad弧度
double torad(double ang){ return ang/180.0*acos(-1.0); } const int maxn=2500;
Point p[maxn];
int n,top;
double sum; bool cmp(Point a,Point b){
if( fabs( Cross(a-p[0],b-a) )<eps ) return a.getdis(p[0])<b.getdis(p[0]);
else return Cross(a-p[0],b-a)>0;
} double ConvexHull(){
top=1;
sort(p,p+n);
sort(p+1,p+n,cmp);
for(int i=2;i<n;i++){
while(top>0 && Cross(p[top]-p[top-1],p[i]-p[top-1])<=0) top--;
p[++top]=p[i];
}
p[++top]=p[0];
double area=0;
for(int i=1;i<top;i++){
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
}
return area/2.0;
} void input(){
n=0;
sum=0;
int m;
scanf("%d",&m);
for(int i=0;i<m;i++){
Point o;
double w,h,ang,rad;
scanf("%lf%lf%lf%lf%lf",&o.x,&o.y,&w,&h,&ang);
rad=-torad(ang);
p[n++]=o+Rotate(Vector(-w/2.0,-h/2.0),rad);
p[n++]=o+Rotate(Vector(-w/2.0,h/2.0),rad);
p[n++]=o+Rotate(Vector(w/2.0,h/2.0),rad);
p[n++]=o+Rotate(Vector(w/2.0,-h/2.0),rad);
sum+=w*h;
}
} void solve(){
double ans=ConvexHull();
printf("%.1lf %%\n",sum*100.0/ans);
} int main(){
int T;
scanf("%d",&T);
while(T-- >0){
input();
solve();
}
return 0;
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

uva 10652 Board Wrapping (计算几何-凸包)的更多相关文章

  1. UVA 10652 Board Wrapping 计算几何

    多边形凸包.. .. Board Wrapping Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu ...

  2. Uva 10652 Board Wrapping(计算几何之凸包+点旋转)

    题目大意:给出平面上许多矩形的中心点和倾斜角度,计算这些矩形面积占这个矩形点形成的最大凸包的面积比. 算法:GRAHAM,ANDREW. 题目非常的简单,就是裸的凸包 + 点旋转.这题自己不会的地方就 ...

  3. UVA 10652 Board Wrapping(凸包)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32286 [思路] 凸包 根据角度与中心点求出长方形所有点来,然后就 ...

  4. UVA 10652 Board Wrapping(凸包)

    The small sawmill in Mission, British Columbia, hasdeveloped a brand new way of packaging boards for ...

  5. 简单几何(向量旋转+凸包+多边形面积) UVA 10652 Board Wrapping

    题目传送门 题意:告诉若干个矩形的信息,问他们在凸多边形中所占的面积比例 分析:训练指南P272,矩形面积长*宽,只要计算出所有的点,用凸包后再求多边形面积.已知矩形的中心,向量在原点参考点再旋转,角 ...

  6. UVA 10652 Board Wrapping(二维凸包)

    传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...

  7. ●UVA 10652 Board Wrapping

    题链: https://vjudge.net/problem/UVA-10652 题解: 计算几何,Andrew求凸包, 裸题...(数组开小了,还整了半天...) 代码: #include<c ...

  8. uva 10652 Board Wrapping

    主要是凸包的应用: #include <cstdio> #include <cmath> #include <cstring> #include <algor ...

  9. uva 10625 Board Wrapping

    https://vjudge.net/problem/UVA-10652 给出n个长方形,用一个面积尽量小的凸多边形把他们围起来 求木板占包装面积的百分比 输入给出长方形的中心坐标,长,宽,以及长方形 ...

随机推荐

  1. SqlServer表EXCEL数据复制的另一种方法

    一个.SqlServer表中的数据复制到excel 1.新建查询,用sql语句把表数据读出来 2.然后,选择数据,右键.复制(也能够点击连同标题复制),拷贝到记事本中(不然会乱码) 3.然后再把记事本 ...

  2. HTML5 Storage API

    原文:HTML5 Storage API Web Storage是HTML5引入的一个非常重要的功能,可以在客户端本地存储数据,类似HTML4的cookie,但可实现功能要比cookie强大的多. 在 ...

  3. 玩转web之servlet(六)---session介绍及简单使用(登录验证中保存信息)

    在浏览器与服务器进行交互时,往往需要把涉及到的一些数据保存下来,这时就需要使用cookie或session进行状态管理. 这篇文章先来说说session怎么用,首先在servlet中创建一个sessi ...

  4. 如何与多个线程的操作epoll fd

    自己曾经做一个接口server时候,这样的场景下我的设计是多个线程操作同一个epoll fd.彼时,我的理由是epoll的系列函数是线程安全的. 当然有人不理解为什么会有多个线程操作同一个epoll ...

  5. richedit设置滚动条的位置和更新内容

    需要txt发现读者richedit的scrollbar位置(为了便于下一次读,直接访问与上次读取下一个读取位置)不值得治疗,采用GetScrollPos.SetScrollPos你可以设置scorll ...

  6. PowerDesigner有几个需要设置

    安装后PDM后.一些易于使用的设计人才需求. 一. 建立name与code做自己的主动关联,我们输入name当你不希望个别及连带code已经改变. 打开Tools->General Option ...

  7. ASP.NET之AdRotator实现淘宝浏览页面的商品随机推荐功能

    如今随便上个网都能够看到淘宝.京东等各大电商平台的双十一购物狂欢宣传,从2009年開始淘宝愣是把11.11这一天打造成了全民购物狂欢节.阿里巴巴的上市更是激发了阿里人的斗志,据说他们今年的目标是100 ...

  8. NLP | 自然语言处理 - 解析(Parsing, and Context-Free Grammars)

    什么是解析? 在自然语言的学习过程,个人一定都学过语法,比如句子能够用主语.谓语.宾语来表示.在自然语言的处理过程中.有很多应用场景都须要考虑句子的语法,因此研究语法解析变得很重要. 语法解析有两个基 ...

  9. Twitter 新一代流处理工具——Heron 该纸币Storm Limitations

    Twitter 新一代流处理工具--Heron 该纸币Storm Limitations (空格分隔): Streaming-Processing Storm Problems scalability ...

  10. XUtils骨架HttpUtils采用Get总是返回请求解决问题的相同信息

    如需转载请注明出处:http://blog.csdn.net/itas109 版本号:Xutils 2014年11月11日 下载地址:https://github.com/wyouflf/xUtils ...