转自:http://apfelmus.nfshost.com/articles/monoid-fingertree.html

This post grew out of the big monoid discussion on the haskell-cafe mailing list.

Introduction

A very powerful application of monoids are 2-3 finger trees, first described by Ralf Hinze and Ross Patterson.

Basically, they allow you to write fast implementations for pretty much every abstract data type mentioned in Okasaki’s book on purely functional data structures. For example, you can do sequences, priority queues, search trees and priority search queues. Moreover, any fancy and custom data structures like interval trees or something for stock trading are likely to be implementable in this framework as well.

How can one tree be useful for so many different data structures? The answer: monoids! Namely, the finger tree works with elements that are related to a monoid, and all the different data structures mentioned above arise by different choices for this monoid.

Let me explain how this monoid magic works.

A list with random access

We begin with the simplest of all data structures, the linked list. As you well know, retrieving the head is fast but random access is much slower:

xs !! n

needs O(n) i.e. linear time to retrieve the n-th element of the list. We would like to create a faster list-like data structure that reduces this to O(log n) i.e. logarithmic time.

For that, we use a binary tree that stores the elements a at the leaves. Furthermore, every node is annotated with a value of type v

data Tree v a = Leaf   v a
| Branch v (Tree v a) (Tree v a)

In other words, our trees look like this

     v
/ \
v v
/ \ / \
v v v v
a a a / \
v v
a a

The leaves store the elements of our list from left to right.

toList :: Tree v a -> [a]
toList (Leaf _ a) = [a]
toList (Branch _ x y) = toList x ++ toList y

Annotations are fetched by

tag :: Tree v a -> v
tag (Leaf v _) = v
tag (Branch v _ _) = v

We can also implement the head operation which retrieves the leftmost element

head :: Tree v a -> a
head (Leaf _ a) = a
head (Branch _ x _) = head x

Ok, so accessing the 1st leaf was easy, how about the 2nd, 3rd, the n-th leaf?

The solution is to annotate each subtree with its size.

type Size = Int

Our example tree has 5 leaves in total and the subtree on the right contains 3 leaves.

     5
/ \
2 3
/ \ / \
1 1 1 2
a a a / \
1 1
a a

Thus, we set v = Size and we want the annotations to fulfill

tag (Leaf  ..)       = 1
tag (Branch .. x y) = tag x + tag y

We can make sure that they are always correct by using smart constructors: instead of using Leaf and Branch to create a tree, we use custom functions

leaf :: a -> Tree Size a
leaf a = Leaf 1 a branch :: Tree Size a -> Tree Size a -> Tree Size a
branch x y = Branch (tag x + tag y) x y

which automatically annotate the right sizes.

Given size annotations, we can now find the n-th leaf:

(!!) :: Tree Size a -> Int -> a
(Leaf _ a) !! 0 = a
(Branch _ x y) !! n
| n < tag x = x !! n
| otherwise = y !! (n - tag x)

And assuming that our tree is balanced, this will run in O(log n) time. But for now, let’s ignore balancing which would become relevant when implementing cons or tail.

A priority queue

Let’s consider a different data structure, the priority queue. It stores items that have different “priorities” and always returns the most urgent one first. We represent priorities as integers and imagine them as points in time so the smallest ones are more urgent.

type Priority = Int

Once again, we use a binary tree. This time, we imagine it as a tournament tree, so that every subtree is annotated with the smallest priority it contains

     2
/ \
4 2
/ \ / \
16 4 2 8
a a a / \
32 8
a a

In other words, our annotations are to fulfill

tag (Leaf .. a)     = priority a
tag (Branch .. x y) = tag x `min` tag y

with corresponding smart constructors. Given the tournament table, we can reconstruct the element that has the smallest priority in O(log n) time

winner :: Tree Priority a -> a
winner t = go t
where
go (Leaf _ a) = a
go (Branch _ x y)
| tag x == tag t = go x -- winner on left
| tag y == tag t = go y -- winner on right

Again, we forgo balancing and thus insertion or deletion.

Monoids - the grand unifier

As we can see, one and the same tree structure can be used for two quite different purposes, just by using different annotations. And by recognizing that the tags form amonoid, we can completely unify both implementations. Moreover, the retrieval operations (!!) and winner are actually special cases of one and the same function!

For brevity, we will denote the associative operation of a monoid with <>

(<>) = mappend

Think of the <> as a small diamond symbol.

Annotations are monoids

The observation is that we obtain the tag of a branch by combining its children with the monoid operation

tag (Branch .. x y) = tag x <> tag y

of the following monoid instances

instance Monoid Size where
mempty = 0
mappend = (+) instance Monoid Priority where
mempty = maxBound
mappend = min

Hence, a unified smart constructor reads

branch :: Monoid v => Tree v a -> Tree v a -> Tree v a
branch x y = Branch (tag x <> tag y) x y

For leaves, the tag is obtained from the element. We can capture this in a type class

class Monoid v => Measured a v where
measure :: a -> v

so that the smart constructor reads

leaf :: Measured a v => a -> Tree v a
leaf a = Leaf (measure a) a

For our examples, the instances would be

instance Measured a Size where
measure _ = 1 -- one element = size 1 instance Measured Foo Priority where
measure a = priority a -- urgency of the element

How does the annotation at the top of a tree relate to the elements at the leaves? In our two examples, it was the total number of leaves and the least priority respectively. These values are independent of the actual shape of the tree. Thanks to the associativity of <>, this is true for any monoid. For instance, the two trees

(v1<>v2) <> (v3<>v4)         v1 <> (v2<>(v3<>v4))
/ \ / \
/ \ v1 v2 <> (v3<>v4)
/ \ a1 / \
v1 <> v2 v3 <> v4 v2 v3 <> v4
/ \ / \ a2 / \
v1 v2 v3 v4 v3 v4
a1 a2 a3 a4 a3 a4

have the same annotations

(v1<>v2) <> (v3<>v4) = v1 <> (v2<>(v3<>v4)) = v1 <> v2 <> v3 <> v4

as long as the sequences of leaves are the same. In general, the tag at the root of a tree withn elements is

measure a1 <> measure a2 <> measure a3 <> ... <> measure an

While independent of the shape of the branching, i.e. on the placement of parenthesis, this may of course depend on the order of elements.

It makes sense to refer to this combination of measures of all elements as the measure of the tree

instance Measured a v => Measured (Tree a v) v where
measure = tag

Thus, every tree is annotated with its measure.

Search

Our efforts culminate in the unification of the two search algorithms (!!) and winner. They are certainly similar; at each node, they descend into one of the subtrees which is chosen depending on the annotations. But to see their exact equivalence, we have to ignore branches and grouping for now because this is exactly what associativity “abstracts away”.

In a sequence of elements

a1 , a2 , a3 , a4 , ... , an

how to find say the 3rd one? Well, we scan the list from left to right and add 1 for each element encountered. As soon as the count exceeds 3, we have found the 3rd element.

1                -- is not > 3
1 + 1 -- is not > 3
1 + 1 + 1 -- is not > 3
1 + 1 + 1 + 1 -- is > 3
...

Similarly, how to find the element of a least priority say v? Well, we can scan the list from left to right and keep track of the minimum priority so far. We have completed our search once it becomes equal to v.

v1                                -- still bigger than v
v1 `min` v2 -- still bigger than v
v1 `min` v2 `min` v3 -- still bigger than v
v1 `min` v2 `min` v3 `min` v4 -- equal to v!
...

In general terms, we are looking for the position where a predicate p switches from Falseto True.

measure a1                                              -- not p
measure a1 <> measure a2 -- not p
measure a1 <> measure a2 <> measure a3 -- not p
measure a1 <> measure a2 <> measure a3 <> measure a4 -- p
... -- p

In other words, we are looking for the position k where

p (measure a1 <> ... <> measure ak)                    is  False
p (measure a1 <> ... <> measure ak <> measure a(k+1)) is True

The key point is that p does not test single elements but combinations of them, and this allows us to do binary search! Namely, how to find the element where p flips? Answer: divide the total measure into two halves

x <> y

    x =       measure a1 <> ... <> measure a(n/2)
y = measure a(n/2+1) <> ... <> measure an

If p is True on the first half, then we have to look there for the flip, otherwise we have to search the second half. In the latter case, we would have to split y = y1 <> y2 and test p (x <> y1).

In the case of our data structures, the tree shape determines how the measure is split into parts at each step. Here is the full procedure

search :: Measured a v => (v -> Bool) -> Tree v a -> Maybe a
search p t
| p (measure t) = Just (go mempty p t)
| otherwise = Nothing
where
go i p (Leaf _ a) = a
go i p (Branch _ l r)
| p (i <> measure l) = go i p l
| otherwise = go (i <> measure l) p r

Since we have annotated each branch with its measure, testing p takes no time at all.

Of course, this algorithm only works if p really does flip from False to True exactly once. This is the case if p fulfills

p (x)  implies  p (x <> y)   for all y

and we say that p is a monotonic predicate. Our two examples (> 3) and (== minimum)have this property and thus, we can finally conclude with

t !! k   = search (> k)
winner t = search (== measure t)

Where to go from here

I hope you have enjoyed this excursion into the land of trees and monoids. If you want to stay a bit longer, implement a data structure that do both look up the k-th element and retrieve the element with the least priority at the same time. This is also known as priority search queue.

If you still long for more, the finger tree paper knows the way; I have tried to closely match their notation. In particular, they solve the balancing issue which turns the binary search on monoids into a truly powerful tool to construct about any fancy data structure with logarithmic access times you can imagine.

Heinrich Apfelmus

转:Monoids and Finger Trees的更多相关文章

  1. Finger Trees: A Simple General-purpose Data Structure

    http://staff.city.ac.uk/~ross/papers/FingerTree.html Summary We present 2-3 finger trees, a function ...

  2. The Swiss Army Knife of Data Structures … in C#

    "I worked up a full implementation as well but I decided that it was too complicated to post in ...

  3. [C#] C# 知识回顾 - 表达式树 Expression Trees

    C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达 ...

  4. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  5. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  6. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  7. [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  8. 2 Unique Binary Search Trees II_Leetcode

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  9. Linux下的Finger指令

    Linux finger命令 Linux finger命令可以让使用者查询一些其他使用者的资料.会列出来的资料有: Login Name User Name Home directory Shell ...

随机推荐

  1. beanutils通过SimpleProperty使用get或set方法赋值

    public class Employee { private String  firstName;    private String lastName;    public Employee() ...

  2. {{angular.js 使用技巧}} - 实现计算列属性

    前端MV*框架现在有很多,其中某些框架有计算列(又叫监控属性),比如:微软推荐的 Knockout.js 和博客园司徒正美的 avalon.js 框架. 本人只使用过 Knockout.js,aval ...

  3. MVC框架的插件与拦截器基础

    自制MVC框架的插件与拦截器基础 上篇谈到我自己写的MVC框架,接下来讲讲插件及拦截器! 在处理一些通用的逻辑最好把它封装一个插件或者拦截器,以便日后可以直接拿过来直接使用.在我的框架中可以通过继承以 ...

  4. Apworks到底是什么?

    Apworks到底是什么? 简介 Apworks是一款基于Microsoft .NET的面向领域驱动的企业级应用程序开发框架,它适用于以领域模型为核心的企业级系统的开发和集成.Apworks不仅能够很 ...

  5. VBS get,post函数

    Function gethttp(gethttp_url) Dim http_get Set http_get=Server.CreateObject("MSXML2.ServerXMLHT ...

  6. tortoiseSVN 设置ignore

      *.o *.lo *.la *.al .libs *.so *.so.[0-9]* *.a *.pyc *.pyo *.rej *~ #*# .#* .*.swp .DS_Store *.dll ...

  7. [转]gdb 调试 objc

    源:http://bbs.pediy.com/showthread.php?t=159549 3. 在没有 symbols的情况下,想要下断 objc method 或者 private framew ...

  8. jQuery中的事件监听方式及异同点

    jQuery中的事件监听方式及异同点 作为全球最知名的js框架之一,jQuery的火热程度堪称无与伦比,简单易学的API再加丰富的插件,几乎是每个前端程序员的必修课.从读<锋利的jQuery&g ...

  9. Kemaswill 机器学习 数据挖掘 推荐系统 Ranking SVM 简介

    Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Le ...

  10. 对C# 构造函数的理解

    C#构造函数是在创建给定类型的对象时执行的类方法. 构造函数具有与类相同的名称,它通常初始化新对象的数据成员.不带参数的构造函数称为“默认构造函数”. 无论何时,只要使用 new 运算符实例化对象,并 ...