codeforces 260 div2 A,B,C
A:水的问题。排序结构。看看是否相同两个数组序列。
B:他们写出来1,2,3,4,的n钍对5余。你会发现和5环节。
假设%4 = 0,输出4,否则输出0.
写一个大数取余就过了。
1 second
256 megabytes
standard input
standard output
Fedya studies in a gymnasium. Fedya's maths hometask is to calculate the following expression:
(1n + 2n + 3n + 4n) mod 5
for given value of n. Fedya managed to complete the task. Can you? Note that given number n can
 be extremely large (e.g. it can exceed any integer type of your programming language).
The single line contains a single integer n (0 ≤ n ≤ 10105).
 The number doesn't contain any leading zeroes.
Print the value of the expression without leading zeros.
4
4
124356983594583453458888889
0
Operation x mod y means taking remainder after division x by y.
Note to the first sample:

#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <ctime>
#include <map>
#include <set>
#define eps 1e-9
///#define M 1000100
///#define LL __int64
#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)?0:x) using namespace std; const int maxn = 1000010; int main()
{
string s;
while(cin >>s)
{
int n= s.size();
int cnt = s[0]-'0';
for(int i = 1; i < n; i++)
{
cnt %= 4;
cnt = (cnt*10+(s[i]-'0'))%4;
}
if(cnt%4 == 0)
cout<<4<<endl;
else cout<<0<<endl;
}
}
C:给你一些数。你取了一个数那么比这个数大1,和小1的数字就会被删掉。
问你最大能取到的数的和。
先依据数字进行哈希,然后线性的dp一遍,dp[i][1] = ma(dp[i-2][0], dp[i-2][1]) + vis[i]*i,dp[i][0] = max(dp[i-1][0], dp[i-1][1]).1代表取这个数。0代表不取。注意数据类型要用long long。
1 second
256 megabytes
standard input
standard output
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence a consisting of n integers. The
 player can make several steps. In a single step he can choose an element of the sequence (let's denote it ak)
 and delete it, at that all elements equal to ak + 1 and ak - 1 also
 must be deleted from the sequence. That step brings ak points
 to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer n (1 ≤ n ≤ 105)
 that shows how many numbers are in Alex's sequence.
The second line contains n integers a1, a2,
 ..., an (1 ≤ ai ≤ 105).
Print a single integer — the maximum number of points that Alex can earn.
2
1 2
2
3
1 2 3
4
9
1 2 1 3 2 2 2 2 3
10
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2].
 Then we do 4 steps, on each step we choose any element equals to 2.
 In total we earn 10 points.
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <ctime>
#include <map>
#include <set>
#define eps 1e-9
///#define M 1000100
///#define LL __int64
#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)? 0:x) using namespace std; const int maxn = 1000010; LL vis[maxn];
LL dp[maxn][2]; int main()
{
int n;
while(cin >>n)
{
int x;
memset(vis, 0, sizeof(vis));
memset(dp, 0, sizeof(dp));
for(int i = 0; i < n; i++)
{
scanf("%d",&x);
vis[x] ++;
}
dp[1][1] = vis[1];
dp[2][1] = vis[2]*2;
dp[2][0] = dp[1][1];
for(int i = 3; i <= maxn-10; i++)
{
dp[i][1] = max(dp[i-2][0], dp[i-2][1])+vis[i]*i;
dp[i][0] = max(dp[i-1][0], dp[i-1][1]);
}
cout<<max(dp[maxn-10][0], dp[maxn-10][1])<<endl;
}
return 0;
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
codeforces 260 div2 A,B,C的更多相关文章
- codeforces 260 div2 C题
		C题就是个dp,把原数据排序去重之后得到新序列,设dp[i]表示在前i个数中取得最大分数,那么: if(a[i] != a[i-1]+1) dp[i] = cnt[a[i]]*a[i] + dp[ ... 
- codeforces 260 div2 B题
		打表发现规律,对4取模为0的结果为4,否则为0,因此只需要判断输入的数据是不是被4整出即可,数据最大可能是100000位的整数,判断能否被4整出不能直接去判断,只需要判断最后两位(如果有)或一位能否被 ... 
- [codeforces 260]B. Ancient Prophesy
		[codeforces 260]B. Ancient Prophesy 试题描述 A recently found Ancient Prophesy is believed to contain th ... 
- Codeforces #180 div2 C Parity Game
		// Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ... 
- Codeforces #541 (Div2) - E. String Multiplication(动态规划)
		Problem Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ... 
- Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)
		Problem Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ... 
- Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)
		Problem Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ... 
- Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)
		Problem Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ... 
- 【Codeforces #312 div2 A】Lala Land and Apple Trees
		# [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ... 
随机推荐
- WPF弹性模拟动画
			原文:WPF弹性模拟动画 我们此次将要制作模拟物理中的弹性现象的交互动画,我们让一个小球向鼠标点击位置移动,这个移动的轨迹不是简单的位移,而是根据胡克定律计算得出的. 胡克定律:F=-kd F代表弹性 ... 
- 促销R语言应用性能
			1. 绩效评估 时间的确定 R测量时间是在最简单的方式提供是system.time性能. system.time(expr, gcFirst=TRUE) 这个函数会在不减少程序执行性能的情 ... 
- 推荐15个月 Node.js 开发工具
			Node.js 越来月流行.这个基于 Google V8 引擎建立的平台, 用于方便地搭建响应速度快.易于扩展的网络应用.在本文中.我们列出了2015年最佳的15个 Node.js 开发工具.这些工具 ... 
- 新浪微博。。openapi 分享 图画+ 写作
			新浪微博困难啊 .. . .. .郁闷死了. .在此记录它 1.使用界面:https://api.weibo.com/2/statuses/upload_url_text.json 能够申请,.高级权 ... 
- android学习一些帖子
			关于谷歌和苹果的帖子 http://news.eoe.cn/18576.html android无线调试的帖子: http://baoyz.com/android/2014/06/24/adb-wir ... 
- 4pdf
			http://www.cnblogs.com/haocool/archive/2013/03/16/2962547.html 
- 重新想象 Windows 8 Store Apps (8) - 控件之 WebView
			原文:重新想象 Windows 8 Store Apps (8) - 控件之 WebView [源码下载] 重新想象 Windows 8 Store Apps (8) - 控件之 WebView 作者 ... 
- [Windows Phone] 实作不同的地图显示模式
			原文:[Windows Phone] 实作不同的地图显示模式 前言 本文章主要示范如何让地图有不同的模式产生,例如平面图.地形图.鸟瞰图.鸟瞰图含街道等. 这部分主要是调整 Map.Cartograp ... 
- 领域驱动设计(DDD)部分核心概念的个人理解(转)
			领域驱动设计(DDD)是一种基于模型驱动的软件设计方式.它以领域为核心,分析领域中的问题,通过建立一个领域模型来有效的解决领域中的核心的复杂问题.Eric Ivans为领域驱动设计提出了大量的最佳实践 ... 
- gradle下载(转)
			http://services.gradle.org/distributions services.gradle.org/ distributions/ gradle-2.2.1-rc-1-all.z ... 
