A:水的问题。排序结构。看看是否相同两个数组序列。

B:他们写出来1,2,3,4,的n钍对5余。你会发现和5环节。

假设%4 = 0,输出4,否则输出0.

写一个大数取余就过了。

B. Fedya and Maths
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Fedya studies in a gymnasium. Fedya's maths hometask is to calculate the following expression:

(1n + 2n + 3n + 4nmod 5

for given value of n. Fedya managed to complete the task. Can you? Note that given number n can
be extremely large (e.g. it can exceed any integer type of your programming language).

Input

The single line contains a single integer n (0 ≤ n ≤ 10105).
The number doesn't contain any leading zeroes.

Output

Print the value of the expression without leading zeros.

Sample test(s)
input
4
output
4
input
124356983594583453458888889
output
0
Note

Operation x mod y means taking remainder after division x by y.

Note to the first sample:

#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <ctime>
#include <map>
#include <set>
#define eps 1e-9
///#define M 1000100
///#define LL __int64
#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)?0:x) using namespace std; const int maxn = 1000010; int main()
{
string s;
while(cin >>s)
{
int n= s.size();
int cnt = s[0]-'0';
for(int i = 1; i < n; i++)
{
cnt %= 4;
cnt = (cnt*10+(s[i]-'0'))%4;
}
if(cnt%4 == 0)
cout<<4<<endl;
else cout<<0<<endl;
}
}

C:给你一些数。你取了一个数那么比这个数大1,和小1的数字就会被删掉。

问你最大能取到的数的和。

先依据数字进行哈希,然后线性的dp一遍,dp[i][1] = ma(dp[i-2][0], dp[i-2][1]) + vis[i]*i,dp[i][0] = max(dp[i-1][0], dp[i-1][1]).1代表取这个数。0代表不取。注意数据类型要用long long。

C. Boredom
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.

Given a sequence a consisting of n integers. The
player can make several steps. In a single step he can choose an element of the sequence (let's denote it ak)
and delete it, at that all elements equal to ak + 1 and ak - 1 also
must be deleted from the sequence. That step brings ak points
to the player.

Alex is a perfectionist, so he decided to get as many points as possible. Help him.

Input

The first line contains integer n (1 ≤ n ≤ 105)
that shows how many numbers are in Alex's sequence.

The second line contains n integers a1, a2,
..., an (1 ≤ ai ≤ 105).

Output

Print a single integer — the maximum number of points that Alex can earn.

Sample test(s)
input
2
1 2
output
2
input
3
1 2 3
output
4
input
9
1 2 1 3 2 2 2 2 3
output
10
Note

Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2].
Then we do 4 steps, on each step we choose any element equals to 2.
In total we earn 10 points.


#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <ctime>
#include <map>
#include <set>
#define eps 1e-9
///#define M 1000100
///#define LL __int64
#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)? 0:x) using namespace std; const int maxn = 1000010; LL vis[maxn];
LL dp[maxn][2]; int main()
{
int n;
while(cin >>n)
{
int x;
memset(vis, 0, sizeof(vis));
memset(dp, 0, sizeof(dp));
for(int i = 0; i < n; i++)
{
scanf("%d",&x);
vis[x] ++;
}
dp[1][1] = vis[1];
dp[2][1] = vis[2]*2;
dp[2][0] = dp[1][1];
for(int i = 3; i <= maxn-10; i++)
{
dp[i][1] = max(dp[i-2][0], dp[i-2][1])+vis[i]*i;
dp[i][0] = max(dp[i-1][0], dp[i-1][1]);
}
cout<<max(dp[maxn-10][0], dp[maxn-10][1])<<endl;
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

codeforces 260 div2 A,B,C的更多相关文章

  1. codeforces 260 div2 C题

    C题就是个dp,把原数据排序去重之后得到新序列,设dp[i]表示在前i个数中取得最大分数,那么: if(a[i] != a[i-1]+1)   dp[i] = cnt[a[i]]*a[i] + dp[ ...

  2. codeforces 260 div2 B题

    打表发现规律,对4取模为0的结果为4,否则为0,因此只需要判断输入的数据是不是被4整出即可,数据最大可能是100000位的整数,判断能否被4整出不能直接去判断,只需要判断最后两位(如果有)或一位能否被 ...

  3. [codeforces 260]B. Ancient Prophesy

    [codeforces 260]B. Ancient Prophesy 试题描述 A recently found Ancient Prophesy is believed to contain th ...

  4. Codeforces #180 div2 C Parity Game

    // Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...

  5. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  6. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

  7. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  8. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

  9. 【Codeforces #312 div2 A】Lala Land and Apple Trees

    # [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...

随机推荐

  1. WPF弹性模拟动画

    原文:WPF弹性模拟动画 我们此次将要制作模拟物理中的弹性现象的交互动画,我们让一个小球向鼠标点击位置移动,这个移动的轨迹不是简单的位移,而是根据胡克定律计算得出的. 胡克定律:F=-kd F代表弹性 ...

  2. 促销R语言应用性能

    1.       绩效评估 时间的确定 R测量时间是在最简单的方式提供是system.time性能. system.time(expr, gcFirst=TRUE) 这个函数会在不减少程序执行性能的情 ...

  3. 推荐15个月 Node.js 开发工具

    Node.js 越来月流行.这个基于 Google V8 引擎建立的平台, 用于方便地搭建响应速度快.易于扩展的网络应用.在本文中.我们列出了2015年最佳的15个 Node.js 开发工具.这些工具 ...

  4. 新浪微博。。openapi 分享 图画+ 写作

    新浪微博困难啊 .. . .. .郁闷死了. .在此记录它 1.使用界面:https://api.weibo.com/2/statuses/upload_url_text.json 能够申请,.高级权 ...

  5. android学习一些帖子

    关于谷歌和苹果的帖子 http://news.eoe.cn/18576.html android无线调试的帖子: http://baoyz.com/android/2014/06/24/adb-wir ...

  6. 4pdf

    http://www.cnblogs.com/haocool/archive/2013/03/16/2962547.html

  7. 重新想象 Windows 8 Store Apps (8) - 控件之 WebView

    原文:重新想象 Windows 8 Store Apps (8) - 控件之 WebView [源码下载] 重新想象 Windows 8 Store Apps (8) - 控件之 WebView 作者 ...

  8. [Windows Phone] 实作不同的地图显示模式

    原文:[Windows Phone] 实作不同的地图显示模式 前言 本文章主要示范如何让地图有不同的模式产生,例如平面图.地形图.鸟瞰图.鸟瞰图含街道等. 这部分主要是调整 Map.Cartograp ...

  9. 领域驱动设计(DDD)部分核心概念的个人理解(转)

    领域驱动设计(DDD)是一种基于模型驱动的软件设计方式.它以领域为核心,分析领域中的问题,通过建立一个领域模型来有效的解决领域中的核心的复杂问题.Eric Ivans为领域驱动设计提出了大量的最佳实践 ...

  10. gradle下载(转)

    http://services.gradle.org/distributions services.gradle.org/ distributions/ gradle-2.2.1-rc-1-all.z ...