P4244 [SHOI2008]仙人掌图 II

题目背景

题目这个II是和SHOI2006的仙人掌图区分的,bzoj没有。 但是实际上还是和bzoj1023是一个题目的。

题目描述

如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus)。所谓简单回路就是指在图上不重复经过任何一个顶点的回路。显然,仙人图上的每条边,或者是这张仙人图的桥(bridge),或者在且仅在一个简单回路里,两者必居其一。定义在图上两点之间的距离为这两点之间最短路径的距离。定义一个图的直径为这张图相距最远的两个点的距离。现在我们假定仙人图的每条边的权值都是1,你的任务是求出给定的仙人图的直径。

输入输出格式

输入格式:

输入的第一行包括两个整数n和m(1≤n≤50000以及0≤m≤10000)。其中n代表顶点个数,我们约定图中的顶点将从1到n编号。接下来一共有m行。代表m条路径。每行的开始有一个整数k(2≤k≤1000),代表在这条路径上的顶点个数。接下来是k个1到n之间的整数,分别对应了一个顶点,相邻的顶点表示存在一条连接这两个顶点的边。一条路径上可能通过一个顶点好几次,比如对于第一个样例,第一条路径从3经过8,又从8返回到了3,但是我们保证所有的边都会出现在某条路径上,而且不会重复出现在两条路径上,或者在一条路径上出现两次。

输出格式:

只需输出一个数,这个数表示仙人图的直径长度。


注意直径的定义,距离定义为最小距离,直径定义为最大距离。

然后树边普通dp,环上需要去小距离,把环倍长,每次只留下环的1/2长度的最大值进行更新即可,用单调队列维护一下。

然后我倍长数组没开两倍调了20年...


Code:

#include <cstdio>
#include <algorithm>
using std::min;
using std::max;
const int N=50010;
int head[N],to[N<<4],Next[N<<4],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int n,m,s[N<<1],tot,fa[N],dfn[N],low[N],dfsclock,dp[N],ans,q[N<<1],l,r;
void cal(int rt,int p)
{
int now=p;tot=0;
while(now!=rt)
{
s[++tot]=now;
now=fa[now];
}s[++tot]=rt;
for(int i=1;i<=tot;i++) s[i+tot]=s[i];
tot<<=1,l=1,r=0;
for(int i=1;i<=tot;i++)
{
while(l<=r&&i-q[l]>tot>>2) ++l;
if(l<=r) ans=max(ans,dp[s[i]]+dp[s[q[l]]]+i-q[l]);
while(l<=r&&dp[s[i]]>=dp[s[q[r]]]+i-q[r]) --r;
q[++r]=i;
}
tot>>=1;
for(int i=1;i<=tot;i++) dp[rt]=max(dp[rt],dp[s[i]]+min(i,tot-i));
}
void dfs(int now)
{
dfn[now]=low[now]=++dfsclock;
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=fa[now])
{
if(!dfn[v]) fa[v]=now,dfs(v),low[now]=min(low[now],low[v]);
else low[now]=min(low[now],dfn[v]);
if(dfn[now]<low[v]) ans=max(ans,dp[v]+dp[now]+1),dp[now]=max(dp[now],dp[v]+1);
}
for(int v,i=head[now];i;i=Next[i])
if(fa[v=to[i]]!=now&&dfn[v]>dfn[now])
cal(now,v);
ans=max(ans,dp[now]);
}
int main()
{
scanf("%d%d",&n,&m);
for(int k,u,v,i=1;i<=m;i++)
{
scanf("%d%d",&k,&u);
for(int j=1;j<k;j++)
{
scanf("%d",&v);
add(u,v),add(v,u);
u=v;
}
}
dfs(1);
printf("%d\n",ans);
return 0;
}

2018,12,25

洛谷 P4244 [SHOI2008]仙人掌图 II 解题报告的更多相关文章

  1. 洛谷P4244 [SHOI2008]仙人掌图 II

    传送门 首先不考虑带环的仙人掌,如果只是一棵普通的树,可以通过dp求每棵子树中的最长链和次长链求树的直径. 那么如果dfs的时候遇到了环,应该用环上的两点挂着的最长链加上两点间的距离来更新树的直径,并 ...

  2. P4244 [SHOI2008]仙人掌图 II

    传送门 仙人掌直径,以前好像模拟赛的时候做到过一道基环树的直径,打了个很麻烦的然而还错了--今天才发现那就是这个的弱化版啊-- 如果是树的话用普通的dp即可,记\(f[u]\)表示\(u\)往下最长能 ...

  3. 洛谷 P1501 [国家集训队]Tree II 解题报告

    P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...

  4. 洛谷 P2323 [HNOI2006]公路修建问题 解题报告

    P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...

  5. [SHOI2008]仙人掌图 II——树形dp与环形处理

    题意: 给定一个仙人掌,边权为1 距离定义为两个点之间的最短路径 直径定义为距离最远的两个点的距离 求仙人掌直径 题解: 类比树形dp求直径. f[i]表示i向下最多多长 处理链的话,直接dp即可. ...

  6. 洛谷 P4009 汽车加油行驶问题 解题报告

    P4009 汽车加油行驶问题 题目描述 给定一个\(N×N\)的方形网格,设其左上角为起点◎,坐标(1,1) ,\(X\)轴向右为正,\(Y\)轴向下为正,每个方格边长为1 ,如图所示. 一辆汽车从起 ...

  7. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  8. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  9. 洛谷 P1407 [国家集训队]稳定婚姻 解题报告

    P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...

随机推荐

  1. 《Redis设计与实现》阅读笔记(一)--Redis学习

    Redis学习资料与过程记录 在实习中经常会用到很多Redis,对Redis有了一些模糊的了解,总觉得隔靴搔痒的不痛快,所以决定开始深入的了解Redis,也作为我实习期间的目标. 这篇只是为了占个位置 ...

  2. RAID系列技术详解

    1.RAID 0 RAID 0是把n个物理磁盘虚拟成一个逻辑磁盘,即形成RAID 0的各个物理磁盘会组成一个逻辑上连续,物理上也连续的虚拟磁盘.一级磁盘控制器(指使用这个虚拟磁盘的控制器,如果某台主机 ...

  3. SparkRDD编程实战

    通过spark实现点击流日志分析案例 1. 访问的pv package cn.itcast import org.apache.spark.rdd.RDD import org.apache.spar ...

  4. 学员管理系统(SQLAlchemy 实现)

    一.业务逻辑 二.设计表结构 三.代码结构 start.py import os, sys sys.path.insert(0, os.path.dirname(os.path.dirname(os. ...

  5. MathExam作业

    作业 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 50 40 • Estimate • ...

  6. 第二阶段Sprint冲刺会议4

    进展:主要实现调取手机摄像头录制,能够实现“开始”及“暂停”功能.

  7. 《Spring2之站立会议9》

    <Spring2之站立会议9> 昨天,添加了注册界面: 今天,添加了表情库: 遇到的问题:由于资源有限,感觉设计的不完美并且途中也遇到了好多问题.

  8. 个人作业4——alpha阶段个人总结(201521123003 董美凤)

    一.个人总结 在alpha 结束之后, 每位同学写一篇个人博客, 总结自己的alpha 过程: 请用自我评价表:http://www.cnblogs.com/xinz/p/3852177.html 有 ...

  9. Keil MDK中的Code, RO-data , RW-data, ZI-data分别代表什么意思?(转)

    一 基础知识 字节  8位半字  16位字    32位 二 解惑 Code, RO-data,RW-data,ZI-data Code为程序代码部分RO-data 表示 程序定义的常量const t ...

  10. 转 理解vuex -- vue的状态管理模式

    转自:https://segmentfault.com/a/1190000012015742 vuex是什么? 先引用vuex官网的话: Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式 ...