之前看了好几次都没什么思路,今天下定决心把这题切了。

观察到$0-x$的gcd最多变化log次,因为它每次变化一定至少要去掉一个质因子,所以我们可以枚举gcd。

因为数据范围比较小,所以想到了分块。

设T为块的大小。

维护块首到块里每个位置的gcd和xor,再把xor排序。

修改的时候暴力改就行,复杂度$TlogT$。

询问的时候如果gcd在这个块里变化了,就把这个块暴力扫一遍,否则说明gcd在这个块里不变,相当于在区间里查是否有某个特定的值,随便二分一下,复杂度$T log inf+\frac{n}{T}logT$。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define N 100005
#define d 200
#define ll long long
using namespace std;
const int inf = ;
int gcd(int a,int b)
{
if(!b)return a;
return gcd(b,a%b);
}
int n;
int a[N];
int gd[N],xr[N],be[N];
vector<int>g[N];
vector<int>::iterator it;
bool cmp(int x,int y)
{
if(xr[x]==xr[y])return x<y;
return xr[x]<xr[y];
}
void gai(int x,int y)
{
int k=be[x];a[x]=y;
int l=(k-)*d+,r=min(k*d,n);
int xx=,now=a[l];g[k].clear();
for(int i=l;i<=r;i++)
{
now=gcd(now,a[i]);
xx=xx^a[i];
gd[i]=now;
xr[i]=xx;
g[k].push_back(i);
}
sort(g[k].begin(),g[k].end(),cmp);
}
void solve(ll x)
{
int now=a[];int cnt=,ed,xx=;
for(int i=;i<=n;i+=d)
{
cnt++;ed=min(n,i+d-);
if(gd[ed]%now!=)
{
for(int j=i;j<=ed;j++)
{
if(gd[j]%now!=)now=gcd(now,gd[j]);
if(x%now==&&x/now==(ll)(xx^xr[j]))
{
printf("%d\n",j-);
return ;
}
}
}
else
{
if(x%now==&&x/now<=inf)
{
int tmp=x/now;
int l=,r=g[cnt].size()-;
tmp^=xx;
if(xr[g[cnt][r]]<tmp)
{
xx^=xr[ed];
continue;
}
while(l<r)
{
int mid=(l+r)>>;
if(xr[g[cnt][mid]]>=tmp)r=mid;
else l=mid+;
}
if(xr[g[cnt][r]]==tmp)
{
printf("%d\n",g[cnt][r]-);
return ;
}
}
}
xx^=xr[ed];
}
puts("no");
return ;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
int cnt=;
for(int i=;i<=n;i+=d)
{
cnt++;
int ed=min(n,i+d-);
int now=a[i];int xx=;
for(int j=i;j<=ed;j++)
{
be[j]=cnt;
now=gcd(now,a[j]);
xx=xx^a[j];
gd[j]=now;
xr[j]=xx;
g[cnt].push_back(j);
}
sort(g[cnt].begin(),g[cnt].end(),cmp);
}
int m;scanf("%d",&m);
char s[];
int t1,t2;ll t3;
for(int i=;i<=m;i++)
{
scanf("%s",s);
if(s[]=='M')
{
scanf("%d%d",&t1,&t2);
t1++;gai(t1,t2);
}
else
{
scanf("%lld",&t3);
solve(t3);
}
}
return ;
}

bzoj 4028 : [HEOI2015]公约数数列的更多相关文章

  1. BZOJ 4028: [HEOI2015]公约数数列 分块

    4028: [HEOI2015]公约数数列 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4028 Description 设计一个数据结 ...

  2. BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】

    任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec   ...

  3. 【BZOJ4028】[HEOI2015]公约数数列(分块)

    [BZOJ4028][HEOI2015]公约数数列(分块) 题面 BZOJ 洛谷 题解 看一道题目就不会做系列 首先\(gcd\)最多只会有\(log\)种取值,所以我们可以暴力枚举出所有可能的\(g ...

  4. 【BZOJ4028】[HEOI2015]公约数数列 分块

    [BZOJ4028][HEOI2015]公约数数列 Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. M ...

  5. bzoj4028: [HEOI2015]公约数数列

    Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY id x: 将 a_{id} 修改为 x ...

  6. 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】

    看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...

  7. luogu P4108 [HEOI2015]公约数数列——solution

    -by luogu 不会啊.... 然后%了一发题解, 关键是 考虑序列{$a_n$}的前缀gcd序列, 它是单调不升的,且最多只会改变$log_2N$次,因为每变一次至少除2 于是,当我们询问x时: ...

  8. [HEOI2015]公约数数列

    不错的分块题 gcd和xor其实并没有联系 这里,xor的按位性质没有半点卵用 gcd的性质却很关键: 一个数组,前缀gcd最多logn个不同的 gcd不太多,(暴力的基础) 所有考虑分块. 分块,每 ...

  9. [BZOJ4028][HEOI2015]公约数数列(分块)

    先发掘性质: 1.xor和gcd均满足交换律与结合率. 2.前缀gcd最多只有O(log)个. 但并没有什么数据结构能同时利用这两个性质,结合Q=10000,考虑分块. 对每块记录这几个信息: 1.块 ...

随机推荐

  1. Linear Regression and Maximum Likelihood Estimation

    Imagination is an outcome of what you learned. If you can imagine the world, that means you have lea ...

  2. PytorchZerotoAll学习笔记(一)

    Pytorch的安装请参考torch的官方文档,传送门:https://pytorch.org/get-started/locally/ Numpy的复习 如果你之前没有学过Numpy的话,建议去看看 ...

  3. [持久更新] 剑指offer题目Python做题记录

    第一题 题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 思路:先快速定位到 ...

  4. 北美跨境电商平台Wish透露未来一年在华规划

    9月12日,北美跨境电商平台Wish在深圳透露了未来一年在中国区的重点规划.Wish中国区总裁丁浩川表示,在下一阶段,Wish公司将继续围绕 提升平台流量. 加强品类支撑. 深化库存管理. 推进物流改 ...

  5. Linux常用软件安装与配置——目录

    http://blog.csdn.net/clevercode/article/details/45740431

  6. Daily Scrum2 11.4

    昨天的任务大家都已经完成,daily scrum记录的是当日已经完成的任务. 今日任务列表: 杨伊:完成团队作业之软件测评的功能部分 徐钧鸿:CodingCook的model和helper部分 张艺: ...

  7. System 类的使用

    /*System 系统类 主要用于获取系统的属性数据.System类常用的方法: arraycopy(Object src, int srcPos, Object dest, int destPos, ...

  8. TCP/IP,HTTP,HTTPS,WEBSocket协议

    我看看着挺多的,我暂时没时间自己写,有需要的请借鉴 http://mp.weixin.qq.com/s?__biz=MzI0MDQ4MTM5NQ==&mid=2247486927&id ...

  9. 项目Beta冲刺(团队)第七天

    1.昨天的困难 服务器部署出了问题,本地服务器差点崩掉 运行一直闪退,在查找哪里出现问题的路上一去不复返 2.今天解决的进度 成员 进度 陈家权 消息功能模块 赖晓连 问答功能模块 雷晶 部署服务器到 ...

  10. 关于地图首页会卡 button background惹的祸

    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:sat=&q ...